Long-term Effects of Perinatally-acquired HIV on the Subcortical Shape of The Adolescent Brain

C. Paula de los Angeles, Paige L. Williams, Yanling Huo, Kathleen Malee, John G. Csernansky, Ram Yogev, Russell B. Van Dyke, Elizabeth R. Sowell, Lei Wang
for the Pediatric HIV/AIDS Cohort Study (PHACS)

October 29, 2015
PHACS 2015 Fall Network Meeting
HIV RNA Load

QUANTIPLEX™ (clear bar) and AMPLICOR HIV-1 MONITOR™ (dark bar) assays show high viral load in select regions (e.g. caudate nucleus and hippocampus).

MF=mid-frontal cortical
AH=Ammon’s Horn
CA=head of caudate
PU=putamen
GP=globus pallidus
SN=substantia nigra
CB=cerebellar cortex
Introduction

Neuroimaging studies: bilateral atrophy in deep nuclei

Bilateral local atrophy in HIV/AIDS
(a) putamen, globus pallidus, (b) thalamus, and in the posterior limb of the internal capsule, along with (c) the cingulate gyrus and the genu and mid-posterior body of corpus callosum, and in (c and d) basal and medial frontal lobes.

Reduction in CDT and PUT in HIV
Top: areas of contraction. The areas of red have no significant contraction, and those with purple have ~15% contraction. Bottom: local significance in the degree of atrophy. Areas marked in white have significant effects (P’s < .01).

Introduction
Our study

• First generation of youths with perinatally-acquired HIV (PHIV), most of whom have received HAART therapy
• Structural MRI of subcortical brain structures
• Primary structures
 – Basal ganglia (caudate, putamen, nucleus accumbens, globus pallidus)
• Secondary structures
 – Thalamus, hippocampus, amygdala
• Measures of HIV disease and cognitive functioning
 • Hypothesis: Smaller volumes will be associated with higher HIV measures
 • Hypothesis: Shape deformities that correspond to localized volume loss will be associated with higher HIV measures
 • Hypothesis: Volume loss & shape deformities will be associated with decreased cognitive performance
Introduction

Covariates

• Age, gender
• Marijuana users have greater volumes in subcortical structures than in control (Gilman, 2014)
• Cannibis use was also associated with shape deformities (Smith, 2014)
• Alcohol abuse is associated with smaller subcortical structures (caudate and putamen) than control subjects (Sullivan, 2005)
• Chronic smoking is associated with global brain atrophy and structural abnormalities compared to non-smokers (Durazzo, 2010)
Methods

Participants

• 40 PHIV youths, 9-18 years
• Ann & Robert H. Lurie Children’s Hospital of Chicago, one site of the Adolescent Master Protocol (AMP) study of the PHACS network
• Perinatal infection with HIV as documented in the medical record
Methods
Measures of HIV disease, substance use, and cognitive functioning

• As part of AMP study
• Historical HIV disease severity: the lowest known CD4% (“nadir CD4%”) and highest known HIV viral load (“peak viral load”) *
• Substance use (alcohol, tobacco, marijuana, illicit drugs)
 – Audio Computer-Assisted Self-Interview, ACASI
• Cognition
 – Working Memory Index, Processing Speed Index
 • Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV) (6-16 years)
 • Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) (17+)
 – Cognitive Proficiency Index (CPI)
• Interval between scanning and assessment of current disease markers = 1.8 (3.5) mo
• Interval between scanning and cognitive testing = 0.9 (6.9) mo

Methods

MRI

• Center for Translational Imaging, Northwestern University Feinberg School of Medicine
• Pediatric Imaging, Neurocognition, and Genetics (PING) imaging protocol
• **T1 MPRAGE** (Sagittal, FOV = 256x256mm, TR/TE/TI=2170/2.78/1100, flip angle= 7°, 1 x 1 x 1.2mm³ resolution). Scan time 8:06 minutes.
• **T2 SPACE** (Sagittal, FOV=320 mm, TR/TE = 3200/447, 1.0 x 1.0 x 1.0 mm³ resolution). Scan time 3:52 minutes.
• **DTI** (Axial, FOV=240mm, TR/TE=9500/91, 2.5 x 2.5 x 2.5 mm³ resolution, b0=1000, 30 diffusion directions, 68 slices, 2 averages). Scan time 10:00 minutes.
• **Resting-state fMRI** (Axial, TR/TE=2500/20, flip=80°, 1.72 x 1.72 x 3mm³ resolution, 36 slices, 170 volumes, parallel to the AC-PC plane). Eyes closed. Scan time 7:05 minutes.
Methods

Image processing

- FS+LDDMM (FreeSurfer-initiated Large Deformation Diffeomorphic Metric Mapping)
 - Atlas-Based Brain Mapping Pipelines
 - FreeSurfer – aligns regions of interest (ROI)
 - LDDMM – accurate and smooth segmentations
 - Fully automated
 - Subcortical surfaces

Methods

Image processing

- ma-FS+LDDMM (multi-atlas)
 - Register N atlases to the target with single atlas FS+LDDMM
 - Propagate N atlas segmentations to generate N target segmentations
 - Fuse target segmentations via voxel-wise averaging
 - Final subcortical surface

Methods

Structural variables

- **Structural volume**
 - Volume enclosed by the subcortical surface
- **Structural shape**
 - Population average
 - Deformation vectors for all surface vertices (up to tens of thousands)
 - Principal components analysis (PCA) for dimensionality reduction
 - Retain principal components (PCs) that account for $\geq 75\%$ variance
 - PC scores for each subject’s surface will be used for statistical analysis
Methods

Statistical analysis – volume-HIV association

• Dependent measure
 – **Volume**
 • Multivariate GLM, hemisphere modeled as repeated measures

• Predictors
 – **Peak HIV-1 RNA load** (log copies/ml)
 – Age at MRI (log)
 – Age at peak RNA (log)
 – Gender
 – Substance use (total use of alcohol, tobacco, marijuana, illicit drug)

• Primary structures
 – Basal ganglia (caudate, putamen, nucleus accumbens, globus pallidus)

• Secondary structures
 – Thalamus, hippocampus, amygdala
Methods

Statistical analysis – shape-HIV association

• Dependent measure
 – **Surface shape PCs**
 • Multivariate GLM, hemisphere, PCs modeled as doubly multivariate repeated measures

• Predictors
 – **Peak HIV-1 RNA load** (log copies/ml)
 – Age at MRI (log)
 – Age at peak RNA (log)
 – Gender
 – Substance use (total use of alcohol, tobacco, marijuana, illicit drug)

• Primary structures
 – Basal ganglia (caudate, putamen, nucleus accumbens, globus pallidus)

• Secondary structures
 – Thalamus, hippocampus, amygdala
Methods

Statistical analysis – visualization of shape-HIV association

• Dependent measure
 – **Surface deformity vectors**
 • Univariate GLM at each vertex

• Predictors
 – **Peak HIV-1 RNA load** (log copies/ml)
 – Age at MRI (log)
 – Age at peak RNA (log)
 – Gender
 – Substance use (total use of alcohol, tobacco, marijuana, illicit drug)

• Significant structures
 – Visualize vertices p<0.05
Methods

- In structures that show significant association with HIV measures
- Average deformity across the surface (combine left and right)
- Correlate with cognitive proficiency index (CPI)
Results

Subjects

ACASI = audio computer-assisted self-interview; ARV = antiretroviral; PHIV = perinatally HIV-infected, VL = viral load, WISC = Wechsler Intelligence Scale for Children, WAIS = Wechsler Adult Intelligence Scale.

* Illicit drug includes: inhalants, amphetamine, cocaine, methamphetamine, crack, sedatives/barbiturates, ecstasy, hallucinogens, heroin.

** Combination ARV regimen defined as regimen including at least 3 drugs from at least 2 drug classes.

Cognitive Proficiency Index (CPI) = Working Memory Index + Processing Speed Index (WISC-IV, WAIS-IV).

All but 2 subjects completed the age-appropriate Wechsler test within 1 year of the MRI scan, with 31 (77%) being tested within 3 months of brain imaging.
Methods

Statistical analysis

• Dependent measure
 – Morphometry (volume, surface shape PC, surface deformity vectors)
 • Multivariate GLM
• Predictors
 – Peak HIV-1 RNA load (log copies/ml)
 – Age at MRI (log)
 – Age at peak RNA (log)
 – Gender
 – Substance use (total use of alcohol, tobacco, marijuana, illicit drug)
• Primary structures
 – Basal ganglia (caudate, putamen, nucleus accumbens, globus pallidus)
• Secondary structures
 – Thalamus, hippocampus, amygdala
Results

Volume

• Dependent measure
 - **Volume**
 • Hemisphere modeled as repeated measures

• Predictors
 - **Peak HIV-1 RNA load**
 - Age at MRI
 - Age at peak RNA
 - Gender
 - Substance use

<table>
<thead>
<tr>
<th>Volume</th>
<th>F (1, 32)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudate</td>
<td>1.19</td>
<td>0.28</td>
</tr>
<tr>
<td>Putamen</td>
<td>2.88</td>
<td>0.10</td>
</tr>
<tr>
<td>Accumbens</td>
<td>0.11</td>
<td>0.74</td>
</tr>
<tr>
<td>Pallidum</td>
<td>1.42</td>
<td>0.24</td>
</tr>
<tr>
<td>Thalamus</td>
<td>1.77</td>
<td>0.19</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>0.00</td>
<td>0.98</td>
</tr>
<tr>
<td>Amygdala</td>
<td>0.03</td>
<td>0.87</td>
</tr>
</tbody>
</table>

No hemisphere-by-peak RNA load interaction
Results

Shape

• Dependent measure
 – **Surface shape PC**
 • Shape PCs modeled as doubly multivariate repeated measures

• Predictors
 – **Peak HIV-1 RNA load**
 – Age at MRI
 – Age at peak RNA
 – Gender
 – Substance use

<table>
<thead>
<tr>
<th>Shape PC</th>
<th>F</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudate</td>
<td>3.09</td>
<td>(4, 29)</td>
<td>0.031</td>
</tr>
<tr>
<td>Putamen</td>
<td>1.69</td>
<td>(6, 27)</td>
<td>0.16</td>
</tr>
<tr>
<td>Accumbens</td>
<td>0.58</td>
<td>(5, 28)</td>
<td>0.72</td>
</tr>
<tr>
<td>Pallidum</td>
<td>2.65</td>
<td>(6, 27)</td>
<td>0.038</td>
</tr>
<tr>
<td>Thalamus</td>
<td>2.39</td>
<td>(6, 27)</td>
<td>0.056</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>0.41</td>
<td>(3, 30)</td>
<td>0.75</td>
</tr>
<tr>
<td>Amygdala</td>
<td>0.05</td>
<td>(4, 29)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

No hemisphere-by-peak RNA load interaction
Results

Shape visualization

• Dependent measure
 – **Surface deformity vectors**
 • Surface deformity performed at every vertex, uncorrected p<0.05

• Predictors
 – **Peak HIV-1 RNA load**
 – Age at MRI
 – Age at peak RNA
 – Gender
 – Substance use
Results

Correlate with cognition

- **Dependent measure**
 - **Average surface deformity vectors**
- **Predictors**
 - **Cognitive Proficiency Index**

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudate</td>
<td>0.25</td>
<td>0.07</td>
</tr>
<tr>
<td>Putamen</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>Pallidum</td>
<td>0.33</td>
<td>0.04</td>
</tr>
<tr>
<td>Thalamus</td>
<td>0.33</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Inward deformity (volume loss) \rightarrow Lower CPI
Results

Correlate with cognition

- Dependent measure
 - Average surface deformity vectors

- Predictors
 - Cognitive Proficiency Index

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudate</td>
<td>0.25</td>
<td>0.07</td>
</tr>
<tr>
<td>Putamen</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>Pallidum</td>
<td>0.33</td>
<td>0.04</td>
</tr>
<tr>
<td>Thalamus</td>
<td>0.33</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Inward deformity (volume loss) \leftrightarrow Lower CPI
Summary

Peak HIV viral load

- In PHIV youth, higher peak viral load was associated with greater localized volume loss in the basal ganglia regions, (thalamus), not in hippocampus.
- These losses were associated with lowered cognitive proficiency index.
- Our findings are consistent with histopathologic and clinical studies in adults with HIV.
- Our findings suggest that patterns of brain dysmorphology in adolescents with life-long HIV given antiretroviral therapy during brain development are similar to those in adult studies.
Summary

Nadir CD4%

- No association with nadir CD4 lymphocyte percentage was observed.
Discussion

- **Direct pathway:** cortex -> GPi -> thalamus <-> cortex
 - The direct pathway combines the '-' inhibitory signal coming from the striatum, and the '-' inhibition signal coming from GPi, and send "disinhibition" signal to the thalamus.

- **Indirect pathway:** cortex -> GPe -> GPi -> thalamus <-> cortex
 - The indirect pathway adds an extra '-' inhibition to the disinhibition of the direct pathway, and send "inhibition" to the thalamus.

![Diagram showing the direct and indirect pathways in the basal ganglia](image)
Acknowledgement

• Patients and families
• NIH/PHACS
 – Paige L. Williams, Yanling Huo, Kathleen Malee, Russell B. Van Dyke
• C. Paula de los Angeles
 – Analysis
• Kathryn Alpert
 – Programming
• Todd Parrish
 – Scanning
• John G. Csernansky, Ram Yogev, Elizabeth R. Sowell & Teams
 – Pilot study