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Abstract 22 

Morphometric Similarity Networks (MSNs) estimate organisation of the cortex as a 23 

biologically meaningful set of similarities between anatomical features at the macro- and 24 

micro- structural level, derived from multiple structural MRI (sMRI) sequences. These 25 

networks are clinically relevant, predicting 40% variance in IQ. However, the sequences 26 

required (T1w, T2w, DWI) to produce these networks are longer acquisitions, less feasible in 27 

some populations. Thus, estimating MSNs using features from T1w sMRI is attractive to 28 

clinical and developmental neuroscience. We studied whether reduced-feature approaches 29 

approximate the original MSN model as a potential tool to investigate brain structure. In a 30 

large, homogenous dataset of healthy young-adults (from the Human Connectome Project), we 31 

extended previous investigations of reduced-feature MSNs by comparing not only T1w-32 

derived networks, but additional MSNs generated with fewer MR sequences, to their full 33 

acquisition counterparts. We produce MSNs which are highly similar at the edge-level to those 34 

generated with multi-modal imaging, however the nodal-topology of the networks differed. 35 

These networks had limited predictive validity of generalised cognitive ability. Overall, when 36 

multi-modal imaging is not available or appropriate, T1w-restricted MSN construction is 37 

feasible, provides an appropriate estimate of the MSN, and could be a useful approach to 38 

examine outcomes in future studies. 39 

Keywords: Morphometric similarity networks, Structural MRI, Morphology, 40 

Connectome, Cognition 41 

  42 
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Author Summary 43 

We can estimate the higher-order organisation of cortical grey matter as a connectome using 44 

structural MRI. However, this methodology, termed morphometric similarity, requires multiple 45 

‘advanced’ neuroimaging protocols that are unsuitable, unavailable or intolerable to certain 46 

populations, including children and some clinical groups. In a large, homogenous dataset of 47 

healthy young-adults, we estimated these connectomes using three different feature sets, each 48 

extracted from fewer MRI sequences. Even when produced using only T1-weighted structural 49 

MRI scans, these connectomes were broadly similar to those produced with more complex or 50 

numerous MRI sequences. We did not replicate previous findings linking variation in the MSN 51 

to individual-differences in cognitive abilities. We highlight potential reasons for this, 52 

including the developmental stage of the young adult imaging cohort in which our hypotheses 53 

were tested,  and conclude that this study provides putative evidence that, in those populations 54 

where advanced imaging is not plausible, MSNs generated from T1-weighted structural MRIs 55 

are a promising alternative.  56 
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1. Introduction 57 

Cortical grey-matter structural covariance networks (SCNs) model the degree to which the 58 

morphology of cortical regions (e.g. cortical thickness or volume) statistically co-varies across 59 

all possible pairs of regions (Alexander-Bloch, Giedd, & Bullmore, 2013; Evans, 2013). These 60 

whole-brain, network approaches to morphometry, within a graph-theoretic framework, allow 61 

us to investigate additional information beyond univariate approaches to neuroanatomy 62 

(Pagani, Bifone, & Gozzi, 2016). Disruption to the SCN has been explored in a range of 63 

neurological and neuropsychiatric conditions. However, this methodology necessarily 64 

generates group-level networks indexing population-level covariance in neuroanatomy 65 

(Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013). This limits the ability to quantify 66 

system-level abnormalities within individual patients, which could benefit stratified diagnosis 67 

and prognosis (Zheng, Yao, Xie, Fan, & Hu, 2018). 68 

An alternative approach to investigate the regional covariance structure between multiple 69 

morphometric features at an individual-level, is Morphometric Similarity Networks (MSNs; 70 

Seidlitz et al. (2018)). This approach estimates meso-scale organisation of the cortex as a 71 

biologically meaningful set of similarities between anatomical features at both the macro- and 72 

micro- structural level (Morgan et al., 2018), including meso-scale morphometry, tissue 73 

diffusion properties and myelination indices. MSNs have been shown to be clinically useful, 74 

predicting ~40% variance in IQ, as well as being biologically-meaningful, with edges of the 75 

MSN highly aligned with regional gene co-expression in human data and axonal tract-tracing 76 

in the rhesus macaque (Seidlitz et al., 2018). These findings reflect the fact that cortical regions 77 

that are more anatomically similar are likely to be anatomically connected (Goulas, Uylings, 78 

& Hilgetag, 2017; Wei, Scholtens, Turk, & van den Heuvel, 2019). The MSN represents a new 79 

neuroimaging phenotype, which may provide additional, biologically-relevant information 80 

beyond existing network approaches. 81 
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MSNs have already been utilised in a small number of clinical studies (characteristics of these 82 

studies, including neuroanatomical features extracted, are listed below in Table 1). For 83 

example,  previous studies identified a robust, replicable pattern of differences in morphometric 84 

similarity between patients with psychosis compared to controls (Morgan et al., 2018) and 85 

detected dysmaturation of the brain in preterm infants (Galdi et al., 2018). Overall, these 86 

findings suggest that MSNs represent a useful and clinically-relevant phenotype.  87 

Multi-modal, high-quality MRI sequences are required for these approaches. These may not be 88 

feasible or tolerable for all research settings and/or populations. Existing clinical (‘legacy’) 89 

cohorts often lack ‘advanced’ imaging. Longer acquisition times for advanced sequences may 90 

reduce image quality, especially in paediatric or clinical applications where non-compliance 91 

and movement is more likely as acquisition time increases (Rosen et al., 2018).  92 

Estimating MSNs using a single T1w 3D anatomical MRI, is appealing for clinical and 93 

developmental neuroscience (Batalle, Edwards, & O'Muircheartaigh, 2018). Seidlitz et al. 94 

(2018) and Li et al. (2017) estimated morphometric similarity in this way and found that 95 

network edge weights were similar to multi-modal MSNs (r = .68, Seidlitz et al. (2018)), with 96 

‘good’ test-retest reliability in terms of network topology (ICC = .60, Li et al. (2017)). Using 97 

only T1w MRI it is possible to identify patterns of morphometric similarity that classify autism 98 

spectrum disorder (Zheng et al., 2019), Alzheimer’s disease and mild cognitive impairment 99 

(Zheng et al., 2018) from controls, albeit with reduced estimation precision, and greater 100 

standard deviation of edge-level weights across participants (Seidlitz et al., 2018). This method 101 

also identified a spatial pattern of anatomical disruptions associated with regional gene-102 

expression, findings consistent with a ‘transcriptional vulnerability model’ of 103 

neurodevelopmental disorders (Seidlitz et al., 2019). Characteristics of these studies, including 104 

neuroanatomical features extracted, are listed below in Table 1. However, existing studies 105 



MSN-CONSTRUCTION WITH RESTRICTED MR ACQUISITIONS 6 

provide limited assessment of reliability, consistency with group-networks, biological validity 106 

and predictive ability.107 
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Table 1. Characteristics of previous studies utilizing Morphometric Similarity Networks to investigate cortical organization 

Study Population MRI Acquisitions MSN feature set 

Seidlitz et al. (2018) Typically-Developing Adolescents Multi-parametric 

mapping sequence & 

DWI 

FA, MD, MT, GM, SA, CT, GC, MC, CI & FI 

(Reduced feature MSN; CT, SA, GM, GC, MC) 

Morgan et al. (2018) Schizophrenia or Non-affective 

psychotic disorders 

T1w MRI & DWI GM, SA, CT, GC, MC, FA, MD 

Galdi et al. (2018) Term & Preterm Neonates T1w MRI, T2w MRI & 

DWI 

GM, T1/T2 ratio, FA, MD, RD, AD, VISO, 

IVF, ODI 

Seidlitz et al. (2019) Neurodevelopmental disorders of 

known genetic origin 

T1w MRI CT, SA, GM, MC, GC 

Li et al. (2017) Health Adults T1w MRI Vertices, GM, SA, CT, SD-CT, MC, GC, CI, FI 

Zheng et al. (2018) Mild Cognitive Impairment & 

Alzheimer’s Disease 

T1w MRI CT, SA, GM, LGI, Sulcul Depth, Gyrus Height 

Zheng et al. (2019) Autism Spectrum Disorders T1w MRI CT, SA, GM, LGI, Sulcul Depth, Gyrus Height, 

MC 

Note. FA=Fractional Anisotropy, MD=Mean Diffusivity, MT=Magnetization Transfer, GM=Gray Matter Volume, SA=Surface Area, CT=Cortical 

Thickness, GC=Gaussian Curvature, MC=Mean Curvature, CI=Curvature Index, FI=Folding Index, RD=Radial Diffusivity, AD=Axial Diffusivity, 

VISO=Isotropic Volume Fraction, IVF=Intracellular Volume Fraction, ODI=Orientation Dispersion Index, Vertices=Number of vertices, SD-CT=Standard 

Deviation of Cortical Thickness, LGI=Local Gyrification Index 

108 
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The current study aimed to determine whether reduced-feature approaches approximate the 109 

‘original’ MSN model. We extended previous investigations of reduced-feature MSNs by 110 

comparing not only T1w-derived networks, but also additional MSN models, each using fewer 111 

metrics from a reduced number of MRI acquisitions. 112 

We predicted that, for each measure of reliability/replicability, performance would be ordered 113 

hierarchically  with MSNs generated with the greatest number of features outperforming those 114 

generated with fewer. We also predicted that between-model comparisons would suggest that 115 

the models themselves were highly similar. In line with previous work (Seidlitz et al., 2018), 116 

we predicted that there would be an association between cognition and MSN organisation and 117 

this would generalise to a novel cognitive-domain, specifically executive functioning. 118 

2. Methods 119 

2.1 Participants - HCP data 120 

The current study uses open access, 3T MRI data provided by the Human Connectome Project 121 

(Van Essen et al 2013, Neuroimage), shared via ConnectomeDB 122 

(https://db.humanconnectome.org) under the HCP1200 and HCP Test-retest release. 123 

Favourable ethical approval for the secondary analysis of this data was granted by the Aston 124 

University ethics panel. 125 

2.1.1 HCP 1200 Release 126 

The HCP 1200 release contains data from n = 1206 subjects (550 Males, 656 Females). 127 

Subjects are grouped into age bins from ‘22-25’ to ‘36+’ (median age = 26-30). Whilst n = 128 

1206 subjects provided behavioural data, only 1113 subjects had MRI data available. These 129 

were the subjects for which data was accessed and downloaded from ConnectomeDB for the 130 

current study.  131 

2.1.2 HCP Test-Retest Release 132 



MSN-CONSTRUCTION WITH RESTRICTED MR ACQUISITIONS 9 

For 46 subjects from the HCP-1200 release, a second ‘retest’ dataset is available to assess test-133 

retest reliability of analyses. These second MRI visits occurred within time bins from ‘1-2 134 

months’ to ’11 months’ post initial scanning session. The median retest-interval bin was ‘5 135 

months’. Of these subject 45 had available MRI data, and these were the subjects used for 136 

subsequent analyses. 137 

2.2 Methods 138 

2.2.1 Data Quality Control 139 

Subjects were selected for inclusion if, in the 1200-subject HCP release, they had T1w (.7mm 140 

isotropic), T2w (.7mm isotropic) and diffusion data uploaded. This led to exclusion of n = 76 141 

cases. 142 

Also, utilising QC data shared by the HCP project, any data labelled as with QC issue code B 143 

(which flags cases as having focal segmentation and surface errors when the corresponding 144 

Freesurfer outputs were checked) was further excluded from the current study (n = 33). The 145 

final dataset consisted of n = 1004 subjects. In the test-retest cohort, only one subject was 146 

excluded as flagged with QC issue B by the HCP project. 147 

2.2.1 MRI Processing 148 

The current study utilises data shared in its pre-processed format, including the output of the 149 

HCP Freesurfer pipeline (Fischl et al., 2002; Glasser et al., 2013; Jenkinson, Bannister, Brady, 150 

& Smith, 2002; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), processed DWI 151 

(gradient non-linearity, eddy-current and EPI distortion corrected (Andersson, Skare, & 152 

Ashburner, 2003; Andersson & Sotiropoulos, 2015, 2016), and calculated T1/T2w ratio myelin 153 

maps (Glasser & Van Essen, 2011). For further details of HCP processing pipelines see Glasser 154 

et al. (2013). 155 
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Once cases were selected, measures indexing the underlying neuroanatomical structure were 156 

derived from multiple imaging modalities (see Table 2). Seidlitz et al. (2018) leverage near-157 

identical MRI-derived metrics for the construction of the MSN network. However, we are using 158 

the T1/T2 ratio as a proxy for myelin content, rather than the magnetization transfer scan used 159 

by Seidlitz et al. (2018). The rationale for this modification was both pragmatic and clinically-160 

driven; i) the T1/T2w ratio maps are already implemented by the HCP project and thus this 161 

data is available for use with the rest of the high-quality HCP acquisition data and ii) in clinical 162 

populations, for which the methods may provide greatest benefit, multi-parameter mapping 163 

MRI sequences may not be acquired as part of a clinical protocol, whereas T1w and T2w 164 

sequences are. 165 

 166 

Table 2. Morphometric measures and the modality of MRI from which they were derived 167 

Modality Metrics 

T1w Cortical thickness (CT), surface area (SA), mean (extrinsic) curvature (MC), Gaussian 

(intrinsic) curvature (GC), folding index (FI), curvature index (CI) and grey matter 

volume (GMV) 

 T2w Myelination (T1/T2w ratio) 

DWI Fractional Anisotropy (FA), Mean Diffusivity (MD) 

 168 

Preprocessed DWI (1.25mm isotropic, b = 1000) in T1w space were fitted to a tensor model 169 

using FMRIB’s ‘dtifit’ function, and the subsequent FA and MD maps were mapped to the 170 

individual subject’s Freesurfer generated surface model in MNI space, using the connectome 171 

workbench (Marcus et al., 2011) function ‘volume-to-surface-mapping’. These, and the 172 

Tw1/T2w ratio myelin maps, were parcellated based on the Desikan-Killany atlas (Desikan et 173 

al., 2006), by generating a dense-cifti (using the ‘cifti-create-dense-from-template’ function) 174 
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and parcellating the output (using ‘cifti-parcellate’). Freesurfer metrics were also extracted for 175 

each parcellated region using the ‘aparcstats2table’ function. 176 

2.2.2 MSN Construction 177 

To generate MSNs we apply the methods of Seidlitz et al. (2018) to the HCP data. The Desikan-178 

Killany atlas was mapped to the individual subjects with a surface-based registration, using the 179 

Freesurfer pipeline. The Desikan-Killany atlas ROIs were used as the nodes for all network 180 

construction. 181 

Morphometric features (parcellated to the Desikan-Killany atlas) for each participant can be 182 

expressed as a set of n vectors of length 10, with each vector as a different anatomical region 183 

(n = 68), and each element of the vector a different morphometric measure. However, these 184 

features are not all measured at the same magnitude of scale. For instance, volume (mm3) is 185 

measured at the order of 103, whereas folding index is measured to the order of 101. Thus, to 186 

normalize within this length 10 vector, each of these morphometric features is normalized 187 

across the 68 regions, using Z-scores (demeaned and SD scaled). This brings the measures 188 

across the feature vector into a comparable range. 189 

Using the normalized features, a correlation matrix is generated for each participant, where 190 

each element of the matrix is the correlation between the feature vectors for every possible 191 

pairwise combinations of regions. Because each feature is zero-centred, the resultant 192 

distribution of correlation coefficients is normally distributed about zero. This correlation 193 

matrix represents the MSN-estimated connectivity for each participant.  194 

We constructed these networks across three different MSN models. These models were 195 

hierarchically organised, with reduced acquisition complexity from model a) to c) seen below; 196 

a) MSN (T1w + T1w/T2w ratio + DWI; ten-features (MSN10-feat.)), 197 

b) MSN (T1w + T1w/T2w ratio; eight-features (MSN8-feat.)), 198 
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c) MSN (T1w; seven-features (MSN7-feat.)) 199 

Model a), hereto referred to as MSN10-feat., is the best approximation of the Siedlitz (2018) 200 

approach, with magnetization transfer replaced with T1w/T2w ratio mapping (Glasser & Van 201 

Essen, 2011) in the current study. Thus, for each participant, three MSNs (one per model) were 202 

estimated. 203 

2.3 Demographic and Behavioural Data 204 

Demographic variables were selected from the unrestricted data table accessed via 205 

‘ConnectomeDB’. These included age bin, sex recorded at birth and recorded quality control 206 

issues. Behavioural data were also extracted to assess the relationship between the MSNs and 207 

both general cognitive ability (measured with both fluid and crystallized intelligence measures) 208 

and executive functioning. These neuropsychological assessments were conducted 209 

contemporaneously in relation to the MRI scans. Further details of the tasks and measures 210 

acquired in the HCP dataset can be found in (Barch et al., 2013).  211 

2.3.1 General Cognitive Ability 212 

General cognitive functioning is measured with the Cognitive Function Composite (CogComp) 213 

score (Heaton et al., 2014), derived from the average of the normalized, scaled scores of Fluid 214 

and Crystallized cognition measures, then subsequently age-adjusted, and scaled. The Fluid 215 

Cognition Composite score is derived by averaging the normalized scores of each of the fluid 216 

ability measures in the NIH-toolbox (Flanker, Dimensional Change Card Sort, Picture 217 

Sequence Memory, List Sorting and Pattern Comparison), whilst the Crystallized Cognition 218 

Composite score is derived by averaging the normalized scores of each of the crystallized 219 

measures in the NIH-toolbox (Picture Vocabulary and Reading Tests). Higher Cognitive 220 

Function Composite scores indicate higher levels of cognitive functioning.  221 

2.3.2 Executive Functioning 222 
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Behavioural executive function (EF) measures were selected based on an evidence-based, 3-223 

factor model of executive function (Karr et al., 2018); measures selected from the HCP 224 

cognitive battery to model EF were  the same as previous studies of EF utilising the HCP data 225 

(Lerman-Sinkoff et al., 2017; Nomi et al., 2017). These tests assessed multiple cognitive 226 

aspects of executive functioning including cognitive flexibility/shifting (Dimensional Change 227 

Card Sort test,(Zelazo, 2006; Zelazo et al., 2014)), inhibition (Flanker Inhibitory Control and 228 

Attention task, (Zelazo et al., 2014)), working memory (List Sorting task, (Tulsky et al., 2013)). 229 

Age-adjusted scores were used for all behavioural data.  230 

Due to the fact we have only one neuropsychological measure per sub-domain of EF and there 231 

is therefore potential risk of measurement error, a principal component analysis (using the 232 

‘prcomp’ function in the R ‘stats’ base package (R Core Team, 2016)) was used to find a 233 

common EF component across all three EF measures. This produced a single principal 234 

component with an eigenvalue above 1, upon which all measures positively loaded onto, and 235 

thus this component was used as a ‘summary’ score of EF (see supplementary materials for 236 

further details). Higher summary EF scores reflect greater EF functioning.  237 

2.4 Statistical comparison 238 

When comparing weighted networks produced by each model, we use multiple metrics to 239 

assess the (dis)similarity of the subsequent covariance matrices.  240 

To reduce number of comparisons and, based on our premise that the MSN10-feat. is the most 241 

precise estimation of the MSN network  (as shown by Seidlitz et al. (2018)), all inter-model 242 

comparisons were done in a hierarchical fashion in comparison to this ‘gold-standard’ network. 243 

That is to say that model MSN10-feat. was compared to the MSN8-feat. and then the MSN10-feat. 244 

was subsequently compared to the MSN7-feat.. 245 
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In order to test differences in the topological organisation of the networks produced by each 246 

model, we calculate average nodal strength for each graph. Nodal strength is the ‘magnitude’ 247 

of structural covariance for each node, this is the sum of the connectivity weights of all edges 248 

connected to node i (Fornito, Zalesky, & Bullmore, 2016). We did not normalize this measure 249 

based on number of edges as we averaged the nodal measures over the graph, where the number 250 

of edges was consistent across models due to density thresholding. This metric was calculated 251 

per subject, per density for each MSN model. For each comparison, we calculate the difference 252 

in distributions of graph strength using a paired t-test test. Due to the large number of 253 

comparisons (across densities, and contrasts) we do not report p-values, but instead report the 254 

effect sizes for comparisons. 255 

We also calculate the Pearson correlation coefficient between all edge weights for both models 256 

(as per Seidlitz et al. (2018)), and also specifically between all non-zero edge weights (those 257 

elements where a zero is present in the correlation matrix for each model are excluded). 258 

However, because of the symmetric, undirected nature of the correlation matrix, this correlation 259 

coefficient may inflate/bias the supposed ‘similarity’ between the sets of edge weights. Thus 260 

we also employed the Mantel test, which calculates the Pearson correlation on either half of 261 

the off-diagonal elements of the correlation matrix (Mantel, 1967).  262 

To compare the binary networks produced by each model at each density (where edges retained 263 

after thresholding are set to 1 and those excluded are set to zero), we assessed the number of 264 

edges in the reduced model which replicated as a proportion of the fuller model, as per the 265 

following formula: 266 

("# ≠ 0	&	(# ≠ 0)
("# ≠ 0)  267 

where xi and yi represent the correlation matrices estimated from two of the MSN models for a 268 

given subject i. 269 



MSN-CONSTRUCTION WITH RESTRICTED MR ACQUISITIONS 15 

Secondly, we calculate these similarity measures between the subject-level network and the 270 

group average network, across all densities and models. This allows the assessment of the inter-271 

subject reliability of the networks being constructed by each model. Thirdly, we similarly test 272 

the intra-subject reliability of the produced networks, based on test-retest data from a subset of 273 

the overall dataset. Due to the categorical and inaccurate nature of the ‘binned’ measurement 274 

of time between initial and retest scan, this was not controlled for in this analysis. 275 

In order to assess the functional relevance of these networks, we assess their ability to predict 276 

CogComp and EF scores using a supervised-learning approach, namely partial least squares 277 

(PLS) regression (similarly to Seidlitz et al. (2018)) using the ‘plsRglm’ package in R (Bertrand 278 

& Maumy-Bertrand, 2018). This multivariate approach finds the optimal low dimensional 279 

relationship between a high dimensional set of predictors (in this case the MSN networks) and 280 

a univariate predictor variable (either CogComp or EF). This approach is commonly use when 281 

the number of predictors exceeds the number of observations (Krishnan, Williams, McIntosh, 282 

& Abdi, 2011).  283 

A PLS regression was used to find the maximal low-dimensional covariance between 284 

components derived from the MSN and cognitive outcomes. The PLS regression was used to 285 

decompose the predictor variables into latent variables (components) which simultaneously 286 

model the predictors and predict the response variable (Krishnan et al., 2011). The predictor 287 

matrix consisted of either the degree or strength of each node of the MSN, for each participant. 288 

Using a linear model, the potential confounding effect of age, gender and age*gender 289 

interaction was regressed out of values for nodal degree/strength (but not our cognitive 290 

outcome variable as these were already age-adjusted within the HCP dataset). For each model 291 

(at each threshold), a PLS regression model was fitted between principal components derived 292 

from the resultant predictor matrix (68 x 991) and the outcome variable. This was repeated 293 

across 100 instances of 9-fold cross-validation.   294 
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Cross-validated R2 (R2
CV) otherwise known as the Q2 statistic (Consonni, Ballabio, & 295 

Todeschini, 2010; Stone, 1974), was used to select the number of components to retain in the 296 

predictor matrix. Q2 was defined as: 297 

*+ = -./+ = 1 − 2-344544 = 1 − ((# − (#)+6
#78

((# − ()+6
#78

	 298 

where PRESS is the predictive residual error sum of squares and TSS is the total sum of 299 

squares.  300 

The number of components to retain in the predictive model was selected as the number of 301 

components which resulted in the greatest Q2 value. This was repeated over the cross-302 

validations and resulted in a count measure of the number of times a model with a given number 303 

of components were selected. Hence the final model was the given number of components 304 

which was most commonly selected as having the greatest Q2 statistic. Given the model with 305 

the retained number of components, we report the variance explained by the model and the bias 306 

corrected and accelerated bootstrapped (Bastien, Vinzi, & Tenenhaus, 2005) weightings of 307 

each predictor. This allows us to assess which brain regions are contributing most to the 308 

prediction.  309 

Due to the normal distribution of the cognitive measures (CogComp and EF) data, there may 310 

be an issue of class-imbalance for more ‘extreme’ cases (Torgo, Branco, Ribeiro, & Pfahringer, 311 

2015). As there are fewer subjects who fall within the tails of the continuous distribution on 312 

our cognition measures, the cross-validation approach may lead to training samples where there 313 

are too few ‘extreme’ cases (those with particularly high/low cognitive abilities) to ‘learn’ 314 

from. This may result in a model where there is accurate prediction around the mean but not at 315 

the tail ends of the distribution. To ensure the training samples contain subjects from stratified 316 

sampling approach, we repeated the analyses discretizing the performance on cognitive 317 
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measures into four discrete bins across the distribution and training a model based on equally-318 

sized, random samples from each bin.  319 

3. Results 320 

3.1 Inter-model comparisons 321 

3.1.1 Magnitude of morphometric similarity: graph-level strength 322 

In terms of the topology of the networks, global graph strength for each model, across densities, 323 

can be seen in Figure 1. This plot shows the similar trajectories across densities for all models 324 

tested, however the observed average graph strength was different between models, with lower 325 

strength being see in the MSN models with greater features. The effect size of differences 326 

(estimated with a paired t-test) between MSN10-feat. vs MSN8-feat. and MSN10-feat. vs MSN7-feat. 327 

can be also be seen in Figure 1. Effect sizes (r) were extremely large, especially between 328 

MSN10-feat. vs MSN7-feat..  329 
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 330 

 331 

Figure 1 Left: Graph metrics describing average network strength for each MSN model, across all densities. Right: Effect sizes of differences between a) MSN10-332 

feat. vs MSN8-feat.  and b) MSN10-feat. vs MSN7-feat.. for differing graph metrics, across densities.333 
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3.1.2 Edge Weights 334 

Figure 2 shows the inter-model comparisons between MSN10-feat. and MSN8-feat., and between 335 

MSN10-feat. and MSN7-feat.. There is a gradual increase in correlation of edge weights across 336 

densities with the peak mean correlation being found between MSN10-feat. and MSN8-feat. at a 337 

40% threshold (r(M±SD) = .849 (± .025)), with slightly weaker correlations found between 338 

MSN10-feat. and MSN7-feat. (r(M±SD) = .736 (± .031)). When considering only the non-zero edge 339 

weights (only edge weights remaining after thresholding), a slightly weaker peak correlation 340 

was found for both contrasts at 5% threshold (MSN10-feat. vs MSN8-feat.  r(M±SD) = .738 (± 341 

.053); MSN10-feat. vs MSN7-feat.  r(M±SD) = .670 (± .066)). However, as the threshold increased, 342 

the dispersion of individual level non-zero edge correlation decreases, especially in the MSN10-343 

feat. vs MSN7-feat. contrast. 344 

 345 
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Figure 2 Violin plot of correlation of edgeweights between a) MSN10-feat. vs MSN8-feat.  and b) MSN10-feat. 346 

vs MSN7-feat.. Midline of the box-plot component of the violin represents the mean of all correlation 347 

coefficients, with the box itself representing the SD of this mean. Individual data points are also plotted. 348 

When considering correlation coefficients calculated using the Mantel test, similarly strong 349 

correlations were found between edge weights across all models however, as predicted, the 350 

MSN10-feat. vs MSN8-feat. were most similar (At 40% threshold: MSN10-feat. vs MSN8-feat. Mantel 351 

r(M±SD) = .835 (± .028); MSN10-feat. vs MSN7-feat. Mantel r(M±SD) = .715, (± .034)). For the 352 

binarized networks, the proportion of edges replicated also peaked at 40% threshold (MSN10-353 

feat. vs MSN8-feat. proportion of replicated edges = 85%, (± 2%); MSN10-feat. vs MSN7-feat. 354 

proportion of replicated edges = 77%, (± 2%; Figure 3)).  355 

 356 

Figure 3 Model comparisons across thresholds using a) Mantel-test correlation coefficient and b) 357 

proportion of edges replicated as measures of model similarities. Midline of the box-plot component of 358 

the violin represents the mean whilst the box itself representing the SD. 359 

3.2 Intra-model comparisons 360 

3.2.1 Test-retest reliability of MSN models 361 
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We compared the MSN models at the initial scan with those calculated from test-retest scans 362 

acquired between 1 and 11 months after the initial MRI. All models showed high test-retest 363 

reliability of the MSN (correlation of all edge weights at 40% threshold: MSN10-feat. r(M±SD) 364 

= .902 (± .032); MSN8-feat.  r(M±SD) = .881 (± .040), MSN7-feat.  r(M±SD) = .857 (± .043)). 365 

This high test-retest reliability of networks held even when networks were binarized (At 40% 366 

threshold: MSN10-feat. proportion of replicated edges = 87 % (± 3%); MSN8-feat.  proportion of 367 

replicated edges = 87% (± 3%), MSN7-feat.  proportion of replicated edges = 86% (± 3%)). See 368 

Figure 3 for plots. 369 

 370 

3.2.2 Similarity with average MSN 371 

For each model, at each threshold, a group-level network was produced as the mean of the 372 

correlation matrices for all subjects. Example correlation matrices are found in Figure 4. Across 373 

all models (MSN10-feat., MSN8-feat., and MSN7-feat.), regardless of similarity metric used, the 374 

individual-level MSNs were highly similar to the group-mean network (see Figure 5). 375 

Interestingly, the MSN8-feat. model showed greatest correlation between edge weights (At 40% 376 

threshold: MSN10-feat. r(M±SD) = .843 (± .032); MSN8-feat.  r(M±SD) = .875 (± .029), MSN7-377 

feat.  r(M±SD) = .850, (± .031)). Similar to the inter-model analyses, correlation peaked at the 378 

highest threshold tested (40%) for all models.  379 



MSN-CONSTRUCTION WITH RESTRICTED MR ACQUISITIONS 22 

 380 

Figure 4. Examples of the correlation matrices generated with each MSN model. Column A 381 

and B represent MSNs from two random subjects from the HCP dataset, whilst the final column 382 

represents the group average MSN for each MSN model. All correlation matrices visualised 383 

here represent the MSN thresholded at a density of 40% and are sorted by lobe assignment as 384 

defined by the desikan-killany atlas (Frontal, Parietal, Temporal, Occipital, Insula, Cingulate).385 
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Figure 5 Plots showing MSN similarity (across thresholds, with multiple similarity measures) between 386 

a,b,c) individual MSNs generated with test-retest MRI scans and d,e,f) individual-level MSNs and the 387 

group-average MSN network. 388 
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3.3 Relationship with cognitive scores 389 

Only participants who had available a full dataset comprising of the three EF subtests and the 390 

CogComp measure were included in the following analyses (n = 991). For both cognitive 391 

variables, using 100 instances of 9-fold cross validation, the greatest Q2 was found most 392 

frequently when zero-components were retained and thus no models were built. 393 

This suggests that no PLS-derived components of nodal degree, strength or normalised strength 394 

of the MSN provided greater explanation than the intercept alone. After the stratified sampling 395 

of the training cohort, there was no improvement in the result outlined above; cross-validation 396 

still recommended retention of zero components for all MSN models.  397 

 398 

4. Discussion 399 

The current study is the first to formally investigate the potential for generation of MSNs based 400 

upon a reduced number of neuroanatomical features, dependant on the complexity of the MRI 401 

acquisition sequence. We found that the weighted networks generated from these models are 402 

highly congruent, across a number of similarity measures. We expanded previous assessments 403 

(e.g. Seidlitz et al., (2018) compared five morphometric features to their full MSN10-feat model) 404 

include multiple MSN models. Irrespective of the statistical assessments used here, the 405 

between-model similarity was nearly always hierarchical, with greater similarity seen between 406 

MSN10-feat. and MSN8-feat. compared to that between MSN10-feat. and MSN7-feat.. Weaker 407 

similarity was found for sparser networks at a much lower density (i.e. 0.05). When edges were 408 

binarised, replication rates remained relatively high, suggesting that the models are sensitive 409 

to the specific edges within the network. Each model displayed high-levels of congruence with 410 

the group average network, suggesting that these methods index individual differences from a 411 

relatively consistent meso-scale-phenotype of brain structure. Li et al. (2017) found high levels 412 
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of test-retest reliability of the T1w MSN, and we replicated this with each of the reduced-413 

feature MSNs seemingly had similar reproducibility in terms of test-retest MRI. This is maybe 414 

unsurprising given that the HCP scan acquisitions are designed for high, within-subject 415 

reproducibility (Van Essen et al., 2013). However, in terms of average nodal strength, a 416 

measure of the magnitude of morphometric similarity, significant between-model differences 417 

with large effect sizes were found. Specifically, as myelo-architectural features were added to 418 

the MSN model (T1w/T2w ratio, FA, MD), the magnitude of morphometric similarity was 419 

reduced and regions appeared less similar and more differentiated, hence the lower average 420 

nodal strength. This suggests that, despite edge-level congruence, the weighted-topology of 421 

individual nodes is different between models. Given that the current, and previous studies (i.e. 422 

Seidlitz et al. (2018), utilise these nodal-level metrics to predict functional outcomes, this 423 

difference in topology means that between-study comparisons of these predictive models, when 424 

generated from different feature sets, is not justified. These differences were only investigated 425 

with a single metric of network topology. Additional metrics (i.e. efficiency/clustering) were 426 

less attractive candidates given that the MSNs do not adhere to typical assumptions of networks 427 

(such as edges representing definitive real connections). Hence, by using strength as a simpler 428 

metric we made fewer assumptions about the underlying neurophysiology of the network.  429 

Interestingly, none of the models tested here showed perfect or even near-perfect concordance 430 

across the statistical measures employed. This may be because these models were generated 431 

with fewer features, rather than being specific to the modality of feature being dropped. Future 432 

research could examine this systematically by generating MSNs with 10, 8 and 7 randomly 433 

selected features, irrespective of modality of MRI sequence used to derive said feature. . 434 

Each model may also index a different network phenotype. Each MRI acquisition assesses 435 

different neuroanatomical features. (e.g. T1w/T2w ratio and DWI specifically index myelo-436 

architecture of regions whilst the T1w MRI assesses macroscopic morphology of the cortex). 437 
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Thus, when features are systematically removed in this way by removing an imaging modality, 438 

the resultant MSN is likely to represent a different imaging phenotype. Therefore, although 439 

each MSN may be substantially statistically similar, in cases where multimodal imaging is 440 

available or is feasible, the most appropriate MSN model may depend on the research question 441 

to be answered or the clinical population/pathological mechanism under investigation.  442 

The main benefit of reduced MR-acquisition approaches (specifically the MSN7-feat. model) is 443 

the applicability to those populations where multiple MR sequence acquisition is more 444 

challenging or difficult (Batalle et al., 2018). For instance, in clinical populations where 445 

research MRI are acquired alongside routine examination and therefore time is limited, or in 446 

developmental populations where acquisition time needs to be kept at a tolerable level for 447 

children to ensure compliance with the full MRI protocol and reduce the likelihood of 448 

movement across each of the scans. Another potential application of these models is in legacy, 449 

clinical imaging. Routine clinical imaging generates vast quantities of MR data that are not 450 

typically assessed using quantitative methods. Although expert reporting yields the information 451 

needed to inform acute diagnostic requirements, the ability of those scans to predict later 452 

outcomes is largely untested or unsatisfactory. The majority of hospital settings will not have 453 

access to high resolution, so called ‘advanced’ MRI sequences, or the expertise to analyse such 454 

data quantitatively. Overall, this therefore positions MSNs as a useful in-vivo imaging 455 

phenotype for studying both clinical and developmental populations, with the T1w-only model 456 

holding greatest potential to become a widely adopted, automated approach in clinical 457 

neurosciences. 458 

A common assumption is that the topological organization of the brain networks (across 459 

multiple MR modalities), as quantified within a graph theoretic framework, captures 460 

physiological information relevant to individual differences in cognitive functioning (Bullmore 461 

& Sporns, 2009; Fornito, Zalesky, & Breakspear, 2013; Hahn, Lanzenberger, & Kasper, 2019). 462 
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We assessed the brain-behaviour relationships using the MSN models by comparing the 463 

predictive validity of the three MSN models in relation to general intelligence, with previous 464 

research showing that the organization of the MSN network (modelled similarly to the MSN10-465 

feat.) predicted ~40% variance in WASI IQ (Seidlitz et al., 2018). The current study did not find 466 

a relationship with either a measure of general cognitive functioning or with a previously 467 

untested domain, executive functioning. Using 9- fold cross-validation, no model (at any 468 

density) recommended retention of any PLS components. An important strength of the current 469 

study is our quantitative approach to cross-validation to confirm the retained number of 470 

components; previous studies retained either the single or two components that explained the 471 

greatest amount of variance (Seidlitz et al., 2019; Seidlitz et al., 2018). This may mean that 472 

previous findings are less generalizable to new datasets, explaining our inability to replicate 473 

findings of Seidlitz et al. (2018). 474 

A number of other factors may explain our results. Developmental differences between our 475 

sample (healthy young adult population between the 3rd and 4th decades of life) and that of 476 

Seidlitz et al. (2018) may account for the lack of predictive ability in our work. Adolescence is 477 

a peak period for brain maturation (Gogtay et al., 2004; Sowell et al., 2004), including 478 

establishment of cognitive skill such as executive functions, as studied here. This is reflected 479 

in data from the NIH-toolbox, in which the total cognition composite highlights shows a greater 480 

magnitude of age effects in childhood compared to adulthood (Akshoomoff et al., 2013; Heaton 481 

et al., 2014). Throughout childhood, the regions subsuming these functions are reaching 482 

structural maturity. Therefore, it is reasonable to believe that, it is within the child/adolescent 483 

period where the most variance in these neurocognitive skills can be explained by structural 484 

networks (as seen by the ~40% variance in IQ explained by the MSN in Seidlitz et al. (2018)). 485 

In the age-range that the current study has sampled, the brain should have reached structural 486 

maturity (with only subtle age-related effects) and so there is likely less between-individual 487 
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variance in the MSN. Greater congruence between individual MSNs and the group-average 488 

MSN in the current study compared to previous adolescent MSNs (correlation of all edge 489 

weights: mean r = .60, (Seidlitz et al., 2018)) supports this contention. Therefore, the limited 490 

variance in the MSN within the age group we studied may mean that there is not enough 491 

variance to relate to cognitive functioning. 492 

Whilst we were not able to replicate previous brain-behaviour relationships with the MSN, 493 

given the evidence above, there is an open hypothesis as to whether the MSN is a valuable tool 494 

in independent populations. We therefore propose that the MSN may in fact be a useful 495 

phenotype for assessing neuropsychological functioning, but only in populations where there 496 

is sufficient variation in the structure of the brain. This may be populations in the 497 

infant/child/adolescent period where structural networks are likely to see greatest variability 498 

due to developmentally-mediated change (such as Galdi et al. (2018) & Seidlitz et al. (2018)) 499 

or clinical populations where atypical brain structure is seen in the pathophysiology of the 500 

disorder (such as Seidlitz et al. (2019), Morgan et al. (2018) & Zheng et al. (2019)). It may be 501 

the case that these networks hold utility in populations such as these, rather than healthy, 502 

matured populations (where measures of brain structure are likely to heavily regress to the 503 

mean). 504 

Our analytic approach may also explain the different findings. Seidlitz et al. (2018) used the 505 

Weschler Abbreviated Scale of Intelligence (WASI; (Wechler, 1999)), whereas we used the 506 

NIH Toolbox Cognition composite scores (Heaton et al., 2014). The composite score shows 507 

high convergent validity with other Weschler assessments of general intelligence (with the 508 

Weschler Adult Intelligence Scale (WAIS-IV, (Wechler, 2008)) r = .89 (Heaton et al., 2014), 509 

and with the Weschler Intelligence Scale for Children (WISC-IV; (Wechsler, 2003)) r = .88 510 

(Akshoomoff et al., 2013), and therefore core data elements will enable future studies to clarify 511 

whether the application of MSNs is relevant to specific measures. We also  calculated the MSN 512 
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at a much lower spatial scale (68 ROIs) compared to previous work (308 ROIs). This lower 513 

spatial resolution may result in more regionally specific effects being difficult to detect, 514 

however it may also have allowed us to detect more subtle effects due to increased power. Yet 515 

it is important to note that the 308 ROIs are derived by subdividing the 68 ROI atlas used in 516 

the current study into equally sized ‘patches’ and thus still respects the anatomy of the brain in 517 

the same way. Therefore, it is highly unlikely that this would explain our non-replication of 518 

previous findings. Future research should replicate the current findings in independent datasets, 519 

across different atlases and at different spatial resolutions. 520 

Conclusion 521 

We have demonstrated that, when we generate the MSN based on a reduced/limited number of 522 

MR features, we produce correlation matrices that are highly similar to those generated with 523 

multi-modal imaging. However, the nodal-level topology differed based on the number of 524 

features. In contradiction of previous research, we found that, regardless of number of features, 525 

these networks have limited predictive validity of generalised cognitive ability scores, although 526 

this may be specific to the current age range under study. Overall, this study provides tentative 527 

evidence that, in situations where multi-modal imaging is not available or 528 

clinically/developmentally inappropriate, T1w-restricted MSN construction may be an 529 

appropriate proxy for multi-modal MSNs. However, nodal-level topology is likely to be biased 530 

based upon the neuroanatomical feature sets utilised to construct these networks, which will 531 

limit generalizability across studies. 532 

  533 
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