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SUMMARY

Resting state functional MRI (fMRI) has enabled
description of group-level functional brain organiza-
tion at multiple spatial scales. However, cross-sub-
ject averaging may obscure patterns of brain orga-
nization specific to each individual. Here, we
characterized the brain organization of a single indi-
vidual repeatedly measured over more than a year.
We report a reproducible and internally valid sub-
ject-specific areal-level parcellation that corre-
sponds with subject-specific task activations. High-
ly convergent correlation network estimates can be
derived from this parcellation if sufficient data are
collected—considerably more than typically ac-
quired. Notably, within-subject correlation variability
across sessions exhibited a heterogeneous distri-
bution across the cortex concentrated in visual
and somato-motor regions, distinct from the pattern
of intersubject variability. Further, although the
individual’s systems-level organization is broadly
similar to the group, it demonstrates distinct topo-
logical features. These results provide a foundation
for studies of individual differences in cortical orga-
nization and function, especially for special or rare
individuals.

INTRODUCTION

The human brain exhibits a substantial degree of anatomic and

functional variability across individuals. This fundamental
observation has both frustrated and intrigued investigators

who have sought to relate individual differences in brain orga-

nization to normal variability in behavior and cognition, as

well as to the pathophysiology of disease (Devlin and Poldrack,

2007; Van Essen and Dierker, 2007). Sophisticated strategies

for transforming intersubject anatomical variability into stan-

dard volumetric and, more recently, surface-based common

spaces allow meaningful comparisons across individuals

(Fischl et al., 1999; Fox et al., 1985). However, such transfor-

mations necessarily obscure individual variability in functional

organization. Just as no single brain is representative of a pop-

ulation, no group-averaged brain represents a given individual.

Furthermore, an observed pattern of functional brain organiza-

tion in an individual may reflect persistent traits shaped by

development and genetics, but may also relate to current

state or environmental effects. Ultimately, accurate identifica-

tion of brain-behavior relationships will require precise charac-

terization of brain organization in individuals that takes into

account both measurement error and intraindividual sources

of variability.

Great advances recently have beenmade in describing group-

average functional brain organization using resting state func-

tional connectivity (RSFC). RSFC is based on the observation

that the blood oxygen level-dependent (BOLD) functional MRI

(fMRI) signal is correlated between spatially separated but func-

tionally related regions of the brain (Biswal et al., 1995). Using

this non-invasive technique, functional organization has been

identified at the systems and areal level—two discrete scales

of brain organization (Churchland and Sejnowski, 1988). At the

systems level, many investigators have used a variety of

methods to produce increasingly comprehensive RSFC-based

descriptions of distributed cortical and subcortical systems

(Choi et al., 2012; Dosenbach et al., 2007; Doucet et al., 2011;

Power et al., 2011; Yeo et al., 2011) that appear to correspond
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with functional systems co-activated by tasks (Power et al.,

2011; Smith et al., 2009). At the areal level, Cohen et al. (2008)

have shown that RSFC exhibits abrupt transitions between puta-

tive cortical areas, i.e., regions of cortex that classically can be

discriminated by multiple convergent properties, including func-

tion, architectonics, connectivity, and topographic organization

(Felleman and Van Essen, 1991). Based on this observation,

the whole cortex has been divided into discrete functional par-

cels, some of which correspond to task activations and cy-

toarchitectonically defined areas (Gordon et al., 2014b; Wig

et al., 2014b; Yeo et al., 2014). Indeed, definition of cortical re-

gions that segregate functional areas of this type should be an

important first step in pursuing network-level analyses that

reflect relevant neurobiological principles (Power et al., 2011;

Smith et al., 2011; Wig et al., 2011). Thus, RSFC has enabled

clear progress in the understanding of brain function and organi-

zation at multiple scales in groups of subjects, providing a

powerful context for understanding brain function. However,

these group-level analyses, which necessarily describe group-

average data, provide only an approximate view of any individ-

ual’s brain organization, potentially obscuring meaningful

individual differences in cortical organization.

Here, we develop a detailed description of individual func-

tional areal and systems brain organization, including how

such organization differs from group-level estimates of organiza-

tion. Importantly, precise estimates of individual functional brain

organization can only be obtained by acquiring sufficient data to

overcome sampling error and other sources of variability. RSFC

studies commonly acquire only 5–10 min of scan time on each

participant, based on recommendations given in past reports

(Damoiseaux et al., 2006; Shehzad et al., 2009; Van Dijk et al.,

2010). This quantity of individual data may be adequate for char-

acterizing group-level patterns of functional brain organization

and group-level differences. However, more recent reports

have suggested that reliability is substantially improved with

more than 10 min of data (Anderson et al., 2011; Birn et al.,

2013; Hacker et al., 2013). Most dramatically, Anderson et al.

(2011) have reported that at least 25 min of scan time and, in

some cases, as much as 4 hr is needed to distinguish an individ-

ual from the group on the basis of RSFC. The total quantity of

data required to accurately estimate whole-brain descriptions

of functional organization in an individual remains an open

question.

To address these considerations, we repeatedly studied one

individual over more than a year, accumulating 14 hr of resting

state fMRI, as part of an extensive phenotypic assessment of a

single human. Using these data, we define a subject-specific

areal parcellation and compare it against task activations ac-

quired in the same subject. We then demonstrate the reliability

and intersession variability of correlation networks derived

from this parcellation. Finally, we report the commonalities and

idiosyncrasies of system topology, i.e., the specific spatial adja-

cencies of functional systemswith respect to each other as iden-

tified by RSFC, in the individual as compared with a group of

normal control subjects (and we further validated these observa-

tions in a second highly sampled subject). This approach high-

lights the challenges that intersubject and intrasubject variability

bring to understanding functional brain organization. It also sets
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the stage in this dataset for relating longitudinal dynamics of

brain function to behavioral and metabolic variability (detailed

in R.A.P. et al., unpublished data), and, more broadly, provides

amodel for the detailed characterization of functional brain orga-

nization in special or rare individuals using RSFC.

RESULTS

Subject-Specific Areal Parcellation
Evaluation of Subject-Specific RSFC-Based Parcellation

An individual subject parcellation was generated using data from

84 resting state sessions following the RSFC-gradient based

procedure described in detail in Gordon et al. (2014b) and Wig

et al. (2014b). In brief, this method uses spatial gradients in the

similarity of neighboring RSFC maps to identify transitions in

RSFC across the cortical surface. Consistent edges identified

in these gradient maps can be used to generate discrete parcels

using the watershed transform (see Supplemental Information).

The parcellation defined by this method demonstrated high

reproducibility, such that parcellations derived from two distinct

subsets of 42 sessions exhibited considerable overlap (yellow

vertices in Figure 1A). The Dice coefficient between these parcel-

lations was 0.87. We further evaluated the internal validity of the

parcels generated from the entire dataset using a homogeneity

measure defined as the percent of variance explained by the first

principal component of the RSFC patterns from all the vertices in

each parcel (Gordon et al., 2014b). Mean homogeneity across all

parcels was 86.5% ± 7.3% (Figure 1B). This mean homogeneity

was significantly greater than that obtained in any of 1,000 null

model parcellations generated by randomly rotating the original

parcellation around the cortical surface (Z score = 23.1, p <

0.001; Figure 1D). Notably, homogeneity of the RSFC-derived

parcels did not strongly vary by parcel size (red line in Figure 1C),

unlike the parcels generated by the null model, which decreased

in homogeneity with increasing size (black line), suggesting that

the parcellationmethod can accurately define putative functional

areas of variable size. Further, the subject-specific parcellation

performed better than our previously defined group parcellation

(Gordon et al., 2014b) evaluated in the same way in the subject

data (Z score = 2.1, p = 0.015) and much better than the AAL

atlas (Z score = �1.3, p = 0.907).

Comparison of Subject-Specific RSFC-Based Parcels

with Task fMRI Responses

If parcels defined by RSFC plausibly reflect cortical functional

areas, they should correspond to areas defined by other mea-

sures of brain functional organization. In the past, we have re-

ported alignment of group-average RSFC-boundaries with

both probabilistic cytoarchitectonic maps and group-level

task activation maps (Gordon et al., 2014b; Wig et al.,

2014b). Although we (necessarily) have no histological mea-

surements in this individual, fMRI responses to a large set of

tasks were collected, allowing for both qualitative and quanti-

tative assessments of within-subject correspondence between

task and rest.

Correspondence with Retinotopy

Putative boundaries between early cortical visual areas V1, V2,

and V3 were identified by demarcating reversals in the polar

angle map responses to a rotating flickering checkerboard
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Figure 1. Subject-Specific Parcellation Is Reproducible and Internally Valid

(A) RSFC-based parcellation produces highly overlapping (yellow) parcel boundaries in two independent subsets of sessions (n = 42 per subset).

(B) Homogeneity of each parcel calculated as the percent of variance explained by the first eigenvector computed fromPCA of the RSFC patterns from vertices in

the parcel.

(C) Homogeneity of real parcels (red dots) by parcel size compared to homogeneity of null model parcels (gray dots). Black dots indicate median homogeneity

across iterations for each null model parcel. Lowess fit lines highlight the effect of parcel size on homogeneity for the individual subject parcels (red line) and the

null model parcels (black line).

(D) Mean homogeneity across parcels in the real parcellation (red dot) is significantly higher (Z score = 23.1) than the mean homogeneity from null model par-

cellations (black dots).
stimulus. Both dorsal and ventral borders of the functionally

defined V1 corresponded well to RSFC-defined parcel edges

in both hemispheres (Figure 2; magenta arrows). The boundary

between dorsal V2 and dorsal V3 also corresponded to parcel

edges in both hemispheres. However, there was no apparent

parcel edge corresponding to the boundary between ventral

V2 and V3 in either hemisphere. Notably, the RSFC parcellation

identified additional boundaries that do not correspond to early

visual area boundaries. Some of these boundaries, particularly

near the occipital pole, may relate to local changes in signal qual-

ity due to magnetization susceptibility inhomogeneity. Further,

more boundaries within the left V1 region were observed than

in right V1. This hemispheric asymmetry may reflect weak corre-

lation gradients in the right hemisphere below the edge detection

threshold. Of particular interest, however, are the boundaries

observed both dorsally and ventrally perpendicular to the long

axis of areas V2 and V3. These boundaries reflect relatively large

correlation gradients that may relate to distinctions between

foveal and peripheral representations of the visual field (cyan ar-
rows) as has been observed in group-averaged data (Buckner

and Yeo, 2014; Yeo et al., 2011).

Correspondence with Evoked Responses to a Set

of Tasks

If RSFC-defined parcels correspond to discrete functional areas,

then focal responses to tasks should fall within parcel bound-

aries. To test this correspondence, we evaluated responses to

all contrasts in all tasks and computed the fraction of thresh-

olded responses contained within RSFC-defined parcels (frac-

tional overlap). Raising the statistical threshold (reducing the

area of ‘‘activation’’) is expected to systematically increase the

fractional overlap (Figure 3B). We found that, averaged across

all the task contrasts, this fraction was greater than chance at

all t-statistic thresholds (Figure 3B). Further, at an arbitrary task

map threshold of t = 2.3 (two-tailed �p < 0.1), 22 of the 27 task

contrasts showed significantly higher overlap with the true par-

cels than the null model (p < 0.05; Figure 3C). Activation maps

from contrasts in the motion discrimination (three of five con-

trasts with p < 0.01), object localizer (ten of ten contrasts with
Neuron 87, 657–670, August 5, 2015 ª2015 Elsevier Inc. 659
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boundary between V1 and V2 areas. Cyan arrows

indicate RSFC-based parcel boundaries that may

represent distinctions between foveal and pe-

ripheral representations in the visual field.
p < 0.01), and verbal working memory tasks (one of three con-

trasts with p < 0.01) corresponded particularly well to RSFC par-

cels, while responses to the N-back (one of six contrasts with p <

0.01) and spatial working memory (zero of three contrasts with

p < 0.01) tasks corresponded somewhat less well.

Areal Network Reliability and Variability
Evaluation of How Much Data Are Needed for Brain

Network Estimation

Using the parcel-wise correlation matrix as a practical proxy for

overall brain organization, we investigated how much resting

state fMRI time is needed to obtain convergent estimates. The

results are based on 1,000 random samplings of the data ac-

quired over 84 sessions split into two halves. To ensure direct

node-to-node comparability, we used the parcels derived from

all 84 sessions to define parcel-wise time courses for both halves

of the data (see Figure S1 for system assignment). We observed

very high measured correlation ðrMÞ between the two halves of

the data comprising 42 sessions each (rM = 0.99 ± 0.002; Fig-

ure 4A). This result defined the upper limit of correlation network

reproducibility to which smaller quantities of data were

compared. The average correlation of only one session (9 min)

from one half of the data with the full set of sessions from the

other half of the data was rM = 0.82 ± 0.04. A steep increase in

average similarity (rM = 0.92 ± 0.01) was observed with three ses-

sions (27 min). Additional improvements were observed up to

approximately ten sessions (90 min; rM = 0.97 ± 0.005), after

which the similarity more slowly approached the asymptotic

value of rM = 0.99 (Figure 4B). The graph shown in Figure 4B

theoretically is a sigmoid of functional form, rM = 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1+ x2

p
,

where x2 is dominated by a term that is inversely proportional

to the quantity of available data (see Figure S2 and the Appendix

in Supplemental Information for an algebraic derivation of the

sigmoidal functional form and relevant formulae). This functional
660 Neuron 87, 657–670, August 5, 2015 ª2015 Elsevier Inc.
form yields a very good fit to the empirical

data and can be used to compute a given

similarity to the ‘‘true’’ value. The relevant

quantities to compute this model are the

measurement error of the correlation be-

tween a given parcel pair and the range of

correlation values in the set of parcel

pairs. Although it is impractical to derive

a theoretical reproducibility curve for

more complex measurements, e.g., par-

cellation, limited testing demonstrated

that these measurements have lower
reproducibility than the correlation matrices with similar quanti-

ties of data. For example, the Dice coefficient between a parcel-

lation generated from one session (9 min) versus 42 sessions is

�0.27.

Additionally, we found that the correlation matrices calculated

from one half of the data converged just as quickly, or even

slightly faster, with the other half of the data when sampling

shorter epochs over more sessions (e.g., 4.5 min from two ses-

sions compared to 9 min from one session; Figure 4C, red line).

This rapid convergence was also seen even with contiguous

segments as short as 1.125 min of data sampled frommore ses-

sions (i.e., 1.125min from eight sessions compared to 9min from

one session; Figure 4C, blue line).

Comparison of Within-Subject Variability

and Between-Subject Variability

Within-subject variability was computed as the standard devia-

tion (SD) of the correlation estimated between each parcel-pair

across all 84 sessions (using individual system assignment,

see Figure S1). Within-subject variability was nonuniformly

distributed across systems, with higher variability observed in

correlations within and between somato-motor and visual re-

gions (Figure 5A, left). Relatively less variability was observed be-

tween fronto-parietal, default mode, ventral attention, and

medial parietal regions. The average variability across all corre-

lations for each parcel confirmed the pattern of relatively larger

variability in visual, somato-motor, and dorsal attention regions

compared with the rest of the brain (Figure 5A, bottom). This

pattern is distinct from the pattern of between-subject variability

computed over group-defined parcels observed in our 120-sub-

ject dataset (Figure 5B; group system assignment defined in

Gordon et al., 2014b). Between-subject variability was relatively

higher in fronto-parietal, cingulo-opercular, attentional, and

default mode regions than in visual, auditory, and somato-motor

regions, as previously reported (Mueller et al., 2013). It should be
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Figure 3. RSFC-Based Parcellation Corresponds with Task Activations

(A) Parcellation boundaries overlaid on an example task contrast from the motion discrimination task.

(B) The average fraction of task-activated vertices that fall within parcels across all 27 task contrasts by t-stat threshold. Expected fraction by chance of task-

activated vertices falling within parcel boundaries is 0.696 (dotted line).

(C) Each colored dot represents the fraction of task-activated vertices that fall within parcel boundaries for each task at a single t-statistic threshold (t = 2.3)

compared with a null model. The null distribution reflects task/parcel area overlap from rotated real parcel boundaries (black dots). Gray bar indicates real

parcellation showed significantly more overlap with task-activated vertices than null parcellations (p < 0.05).
noted that correlation variability generally was much higher

across individuals than across sessions within the individual,

particularly in the fronto-parietal, cingulo-opercular, attentional,

and default regions.

A potential source of intersession variability in the individual

is that on Tuesdays (n = 40 sessions) the subject fasted and

abstained from caffeine to prepare for a blood draw, while

on Thursdays (n = 32 sessions) the subject was fed and

caffeinated. We observed differences in correlation strengths

between Tuesday and Thursday, with increased correlations

within and between somato-motor and extrastriate visual re-

gions (Vis 2) on Thursdays relative to Tuesdays (see Fig-

ure S3A; further detailed in R.A.P. et al., unpublished data).
Although these effects of day likely account for some of the

observed variability reported above, correlation variability

was still relatively higher in visual and somato-motor regions

in Tuesday or Thursday acquisitions considered separately

(Figure S3B).

Vertex-wise System Estimation
Comparison of Individual System Definition to Group

System Definition

Systems were defined using Infomap-based community detec-

tion in the individual and compared with similar results obtained

in the group (Figure 6). The systems have been color coded using

the same scheme where possible. Most systems were grossly
Neuron 87, 657–670, August 5, 2015 ª2015 Elsevier Inc. 661
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Figure 4. Convergence of Resting State Correlation Estimates Requires Significant Amounts of Data

(A) Example parcel correlation matrices computed from each half of the data. The parcels are sorted by systemwith black lines indicating system boundaries (see

Figure S1 for system assignments).

(B) Pearson correlation (rM) of parcel-based correlation matrix from one half of the data with the correlation matrix generated from increasing amounts of data

drawn from the other half. Represented are the mean (solid line) and SD (dotted lines) of this correlation from 1,000 random samplings of 84 sessions.

(C) Correlation when the same amount of time is drawn from a larger number of sessions, e.g., 18 min drawn from 4.5 min of four sessions (point on red line) is

compared with 18 min drawn from 9 min of two sessions (point on black line).
topologically similar in the individual and the group, including

default mode, visual, dorsal attention, ventral attention, fronto-

parietal, cingulo-opercular, salience, auditory, somato-motor,

medial parietal, and parieto-occipital systems. Furthermore,

this commonality extended to detailed features of systems. For

example, smaller regions of the fronto-parietal system in the

anterior insula and in dorsal medial prefrontal cortex appear in

both the individual and the group (magenta circles). The overall

Dice coefficient between the individual and group consensus

maps is 0.52.

In contrast, some features of the system maps were markedly

different between the individual and the group. The Infomap al-

gorithm did not define lateral somato-motor (orange arrows) or

medial temporal systems in the individual, as were found in the

group. On the other hand, the individual had a clearly defined pri-

mary visual system that was not seen in the group (olive arrows).

Prior reports (McAvoy et al., 2008; Xu et al., 2014) suggest that

the presence of a primary visual system and the lack of the

ventral somato-motor system might relate to a difference in

eye state between the individual (eyes closed) and group (eyes

open) data. Indeed, an additional 100 min of eyes-open data

collected in the individual as part of a validation dataset

confirmed that the effect of eye state is localized primarily to oc-

cipital cortex and regions adjacent to the precentral and post-
662 Neuron 87, 657–670, August 5, 2015 ª2015 Elsevier Inc.
central gyri, identified as visual, somato-motor, and dorsal atten-

tion regions in this individual (see Figure S4).

Several additional systems were also observed in the primary

subject that were not present in the group consensus map. Un-

like the primary visual system, which was seen at every tested

edge density, these unknown systems were only observed at

lower edge densities (see Figure S5), indicating that they were

less readily separable from other systems and therefore may

be of dubious status. One further observation worth noting is

that the group consensus map includes a region in the lateral oc-

cipital-temporal cortex (between the default mode and visual

systems) without system assignment; in the individual, this

same region showed unambiguous system affiliation (Figure 6,

green squares).

Fine-grained features in the individual’s systemmapwere pre-

sent across many edge densities. Although we cannot specif-

ically address all of these features, we highlight the pattern of

correlation in two adjacent regions of the lateral frontal cortex

in the individual relative to the group (Figure 7). In the individual,

these two adjacent regions showed starkly divergent patterns of

functional connectivity: the Infomap algorithm identified the

more anterior region as part of the cingulo-opercular system

and the more posterior region as part of the fronto-parietal sys-

tem. In contrast, the same two adjacent regions in the group
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Figure 5. Across-Session Compared with Across-Subject Variability in Resting State Correlations

(A) Top: parcel-to-parcel correlation standard deviation (SD) across sessions based on the individual subject parcellation and system assignment (see Figure S1).

Bottom: the average correlation SD for each parcel across all of its connections.

(B) Top: parcel-to-parcel correlation SD across subjects using the group parcellation and system assignment reported in Gordon et al. (2014b). Bottom: the

average correlation SD for each parcel across all of its connections.
showed only local differences in functional connectivity and

essentially no long-range differences. Furthermore, a direct

comparison of RSFC maps, vertex by vertex, between the indi-

vidual and the group confirmed a group-individual discrepancy

in the example lateral frontal region of Figure 7, as well as

many other focal regions with distinct patterns of RSFC (Fig-

ure S6A, top row). To ensure that the observed differences

between the primary subject and the group were not related to

differences between scanners and fMRI sequence parameters,

an additional validation dataset (100 min eyes-closed rest) was

collected on the primary subject at the Washington University

site with the same fMRI sequence as the group data. The focal

individual versus group differences were replicated in the valida-

tion dataset (Figure S6A, second row).

To evaluate whether such focal differences are unique to this

particular highly sampled individual or a more general feature

of individual brain organization, we collected an extensive data-

set (ten runs of 30min) on an additional subject (‘‘secondary sub-

ject’’). The Infomap-based community detection result at several

edge densities are reported for this individual and comparedwith

the group system map in Figure S7. This second individual also
exhibited many of the same systems as the group data. As this

individual’s data were collected with eyes open, it should be

noted that, unlike the primary subject, this individual did not

have a separate primary visual system but did have a separate

ventral somatomotor system (Figure S7, middle rows). Further,

focal differences between this second individual and the group

were observed primarily in frontal and parietal regions (Figure S7,

bottom row), as in the primary subject, although the exact loca-

tions were different. Together, these observations illustrate the

existence of idiosyncratic topological features in functional brain

organization specific to each individual.

DISCUSSION

We present a description of the functional organization of a sin-

gle human brain, based on functional MRI measurements

repeatedly sampled over more than a year. Resting-state corre-

lation-based functional organization was highly reproducible in

this individual. The areal parcellation derived from resting state

data corresponded with aspects of retinotopically defined visual

areas and fMRI responses to task paradigms in the same
Neuron 87, 657–670, August 5, 2015 ª2015 Elsevier Inc. 663
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The maps depicted here represent a single view of community identity collapsed across multiple edge density thresholds (additional edge densities are found in

Figure S5). Magenta circles highlight similarities between the individual and the group in the fronto-parietal system. Orange arrows point to the lateral somato-

motor system present in the group but not the individual, while olive arrows point to the primary visual system present in the individual but not the group.
individual. Across-session variability in RSFC was greater in vi-

sual, somato-motor, and dorsal attention regions relative to

other regions, though considerably less overall than between-

subject variability. Finally, we found that functional systems are

largely similar in the individual and in the group but that some

features in the individual were topologically distinct.

Subject-Specific RSFC-Based Parcels Are Reproducible
and Show Internal Validity
RSFC-based subject-specific parcellation was reproducible

across subsets of data and internally valid according to the

criteria defined in Gordon et al. (2014b). In particular, the sub-

ject-specific parcellation exhibited high parcel-wise homogene-

ity, and the whole parcellation was significantly more homoge-

nous than a null model. This result suggests that, as a whole,

the parcellation effectively delineates functionally homogenous

cortical areas in this individual, and therefore is likely to represent

a neurobiologically meaningful basis for brain network analyses

(Power et al., 2011; Smith et al., 2011; Wig et al., 2011).

The final parcellation included 616 parcels across both cortical

hemispheres. This figure is somewhat greater than the 150–200

human cortical areas per hemisphere estimated by Van Essen

et al. (2012), and also greater than the 333 parcels previously

identified in group-average data (Gordon et al., 2014b). RSFC-

based parcellation is capable of finding functional subdivisions

within traditionally defined cortical areas, e.g., putative distinc-

tions between tongue, hand, and foot representations within
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Brodmann areas 3 and 4 (Gordon et al., 2014b). Here, even

finer delineation of specific functional subdivisions was possible,

most likely because imperfect registration of functional systems

across individuals was avoided. Our experience indicates that

the precise number of parcels and exact position of the parcel

boundaries may vary with processing choices (e.g., smoothing,

edge retention threshold), but the general shape and position

of parcels does not significantly change. Thus, the current

parcel set should be viewed as a current best estimate for this

subject.

Subject-Specific RSFC-Based Parcels Correspond
to Task-Evoked Responses
Correspondence between group-level resting state correlation

organization and task co-activation patterns has been amply

documented (Cordes et al., 2000; Power et al., 2011; Smith

et al., 2009; Wig et al., 2014a). However, subject-specific

task-rest correspondence has been more difficult to demon-

strate. Blumensath et al. (2013) have reported that RSFC mea-

surements track task responses in individuals. Here, with the

advantage of a much larger dataset, we observed a significant

correspondence between subject-specific RSFC-defined par-

cels and task evoked responses. The V1/V2 boundary defined

by retinotopic mapping clearly corresponded to RSFC-based

parcel edges. This result replicates, in an individual, our previ-

ous observations at the group-level of a correspondence be-

tween RSFC-derived parcels and cytoarchitectonic boundaries



Figure 7. Example of Idiosyncratic Patterns of Functional Connectivity in an Individual
Two nearby regions of interest (white spheres) in the lateral frontal cortex have the same system identity in the group (fronto-parietal) but different system

identities in the individual (cingulo-opercular and fronto-parietal). Top: correlation maps from these two regions have very similar patterns in the group, with the

largest differences occurring locally. Bottom: the same two regions demonstrate starkly different correlation patterns in the individual, with large regions of cortex

showing large differences in correlation.
between probabilistic areas 17 and 18 (Gordon et al., 2014b;

Wig et al., 2014b). Areas V2 and V3 also showed correspon-

dence with RSFC-defined parcel edges, albeit less consis-

tently and only dorsally. As noted above, RSFC-defined par-

cels need not correspond exactly with classically defined

cortical areas. Indeed, we observed RSFC-defined parcel

edges in this individual that may correspond to foveal versus

peripheral representations of the visual field (Buckner and

Yeo, 2014).

Similarly, some task responses corresponded better to the

RSFC-based parcellation than others. In particular, the object lo-

calizer, verbal working memory, and motion discrimination tasks

produced activation patterns that better aligned with parcels

than the N-back and spatial working memory tasks. Although

the reasons for this observation are uncertain, one possibility is

that some task contrasts may be less process specific than

others, leading to a loss of specificity of evoked responses

across neighboring functional areas. Reduced specificity may

reflect multiple distinct processes invoked in a given task condi-

tion or alternate cognitive strategies used in different task ses-

sions. Of course, the set of tasks used for this study does not

represent the universe of tasks needed to delineate the full com-

plement of cortical functional areas. However, the presently
demonstrated task-rest correspondence so far observed in

this dataset validates the principle that subject-specific parcella-

tions can inform future network analyses.

Measures of Individual Functional Brain Organization
Converge with Sufficient Data
We found that 9 min of data generated respectable reproduc-

ibility of correlation network estimates with respect to the

‘‘true’’ correlation matrix (average rM = 0:82).However, systemat-

ically varying the quantity of data revealed greatly improved pre-

cision of correlation matrix estimates as the quantity of data

increased from 9–27 min and beyond, in accordance with theory

taking into accountmeasurement error and the range of values in

the correlationmatrix (see Supplemental Information). This result

is consistent with recent reports (Anderson et al., 2011; Birn

et al., 2013; Hacker et al., 2013). Thus, 5–10 min of data, as

commonly collected in many resting-state studies, may not cap-

ture a precise representation of stationary functional connectivity

features of individual subjects. Further, it should be noted that

the presented reproducibility values correspond to the relatively

robust measure of correlation estimates from mean parcel time

courses. Achieving similar levels of reproducibility for more

fine-grained measures of brain organization (e.g., parcellation)
Neuron 87, 657–670, August 5, 2015 ª2015 Elsevier Inc. 665



may be expected to require extended per-subject datasets, as

collected here.

It is possible to effectively measure individual brain organiza-

tion with multiple scans of shorter length (e.g., 5 min), provided

that a sufficient number of scans are acquired. This observation

may have implications for study designs in populations in which

longer scans may be difficult to obtain (e.g., children). Functional

connectivity estimates in the primary subject converged at

approximately 100 min of total scanning time. Although

acquiring this much data in individuals is not feasible in many

contexts, 100 min could be seen as aspirational for those inter-

ested in comprehensively characterizing single-subject features

of RSFC, whichmay be desirable when investigating the network

organization of special or rare individuals.

Sources of Within-Subject Variability in Functional
Connectivity Are Different Than Sources
of Between-Subject Variability
Within-subject variability in RSFC was not uniformly distributed

across the cortex. In particular, visual, somato-motor and

some dorsal attention regions were more variable than other re-

gions of the brain. In stark contrast, between-subject variability

was relatively lower in somato-motor and visual regions than in

default mode, attentional, and control network regions. This

result expands on previous findings reported by Mueller et al.

(2013) and suggests that sources of within-subject variability

versus between-subject variability are distinct. Specifically, the

large between-subject variability of correlation estimates in fron-

tal and parietal regions may reflect interindividual variability in

cortical folding patterns (Hill et al., 2010), variable localization

of functional areas with respect to sulcal anatomy (Frost and

Goebel, 2012), and/or variable system topologies (as discussed

below). These factors could lead to misalignment of cortical re-

gions, thereby increasing apparent correlation variability as as-

sessed by the group-averaged parcellation used here. However,

anatomical variability cannot explain the presently observed

pattern of within-subject correlation variability. Other than mea-

surement error (the dominant source of variance according to the

model defined in the Appendix in the Supplemental Information),

there are several known biological sources of within-subject vari-

ability. In particular, slow biological processes such as diurnal

rhythms have been shown to significantly modify spontaneous

BOLD activity (Hodkinson et al., 2014; Shannon et al., 2013). In

the present case, however, the vast majority of scans were

collected at the same time of day (7:30 a.m.). More generally,

any intraday BOLD fluctuations longer than 10minutes are unob-

servable with these data. Alternatively, numerous studies have

demonstrated specific effects of different cognitive and behav-

ioral contexts on resting-state activity (e.g., Gordon et al.,

2014a; Lewis et al., 2009; Tambini et al., 2010). Such cognitive/

behavioral contexts could not be entirely controlled from session

to session and therefore may have contributed to cross-session

variability. A third possible source of variability is metabolic state

(i.e., fed or fasted, caffeinated or uncaffeinated), addressed in

more detail below. Other unidentified sources of RSFC variability

are likely to exist (e.g., fluctuating hormones, mood, gene

expression, and longitudinal seasonal or aging-related changes),

the discovery of which is one of the explicit objectives of
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acquiring this dataset (described in R.A.P. et al., unpublished

data), but discussion of which is out of scope in the present

report. Although sampling error is the primary source of vari-

ability in functional connectivity estimates, those additional sour-

ces of variability contribute to the necessity of acquiring large

quantities of data to obtain stable measurements of brain

organization.

Systematic effects attributable to fasted/uncaffeinated (Tues-

days) versus fed/caffeinated (Thursdays) states were observed

in extrastriate visual regions and somato-motor regions. This

result is consistent with the previous finding that caffeine re-

duces measured RSFC in motor cortex (Rack-Gomer et al.,

2009). Although fasting/caffeination accounts for some of the

increased within-subject variability described above, within-

subject variability was still relatively higher in somato-motor

and particularly visual regions in Tuesday and Thursday acquisi-

tions considered separately. This residual variability most likely

reflects variable arousal across sessions, as Tagliazucchi and

Laufs (2014) have recently reported increased BOLD variance

in somato-motor and visual regions during light sleep relative

to waking. Unfortunately, we did not acquire simultaneous

EEG-fMRI to confirm this possibility. However, R.A.P. et al. (un-

published data) found that the effect of Tuesday versus Thursday

differences on connectivity within these networks was partially

attributable to fatigue measured immediately after the scan. In

any case, multiple sources of variability potentially affect day-

to-day correlation estimates in an individual. Hence, a compre-

hensive picture of functional organization may not be achievable

in a single session. On the other hand, intersession variability is

dwarfed by between-subject variability. Hence, interindividual

variability is the dominant confound in studies of group-level

differences.

Individual Functional Brain Organization Shows Similar
System Definition as Group but Also Exhibits Distinct
Functional Topology
Almost all of the RSFC systems and their topological relations

identified in the individual were also found in the group. Several

spatial motifs in the adjacencies of group-average systems

observed in prior work (Power et al., 2011) are also present

in the individual, including the default/salience/cingulo-oper-

cular and the somato-motor/dorsal-attention/fronto-parietal in-

terfaces. The presence of these topological motifs (salience

and dorsal-attention) in both individuals provides further evi-

dence that they are not the result of intermixed signals gener-

ated by averaging, a concern posed in the previous work. On

the other hand, the frontal-parietal-temporal subgraph found

in that work, interposed between default and fronto-parietal

systems (light blue in Power et al., 2011), does not have an

analogous system in these individuals. Additional highly

sampled subjects will be needed to confirm whether this is a

general observation of individual functional brain organization.

The two most notable differences between the individual and

the group Infomap results are the absence in the individual

of the lateral somato-motor system and the presence of an

additional system in primary visual cortex. These differences

are consistent with previously described effects of eyes-closed

(individual) versus eyes-open (group) resting state data. The



eyes-closed state has been shown to increase spontaneous

BOLD fluctuations in visual and somato-motor regions (McA-

voy et al., 2008) and enhance visual:somato-motor correlations

(Xu et al., 2014). Direct comparison of eyes-closed and eyes-

open data collected in our validation dataset confirm that eye

state has localized effects in visual, somato-motor, and adja-

cent regions (see Figure S4). These differences in RSFC be-

tween eye states likely account for several of the system-level

differences between the individual and the group. However,

eye state does not explain the more focal differences dis-

cussed below.

Figure 7 highlights a detailed topological feature that is notably

different in the primary subject as compared to the group. This

and other topological differences between the primary subject

and the group apparent in Figure 6 (e.g., fronto-parietal system

patches in the rightmedial prefrontal and posterior cingulate cor-

tex; ventral attention and default mode patches in left middle

frontal gyrus) and between the second subject and the group

(see arrows in Figure S7) indicate clear individual differences in

RSFC (see Figures S6A and S7, bottom row). The group data

were geodesically registered on the surface based on macro-

anatomic sulcal and gyral features; this registration represents

the current state of the art, but it does not achieve a true area-

to-area registration (Frost and Goebel, 2012). Thus, group-level

averaging of RSFC patterns necessarily blurs over functionally

variable regions, creating the appearance of reduced topological

complexity. Such blurring may explain the inability to assign a

system identity to the blank region in lateral occipital-temporal

cortex in the group result, where there are clear system identities

in each individual (Figure 6).

The observation of distinct topological features in individuals

raises an interesting possibility concerning brain organization.

If we assume that brain systems are composed of functionally

related cortical areas and that cortical areas are unlikely to be

translated over large distances across the cortical surface,

then the present evidence suggests that some cortical areas

are connected to different systems in different individuals. In

other words, some cortical areas may be functionally variable

across individuals in their general relationships with other brain

areas. Verification of this possibility will require collecting simi-

larly massive data sets on more than just two individuals.

Further, from a methodological standpoint, this observation

may have important implications for techniques that attempt

to incorporate functional responses into a registration algorithm.

Registration strategies have been proposed to improve align-

ment between subjects taking into account functional variability

(Robinson et al., 2014; Sabuncu et al., 2010). However, these

schemes rely on having sufficient data in each individual to

accurately estimate individual functional topography. Further,

such registrations can only align topologically consistent fea-

tures. If, however, individuals exhibit true topological differ-

ences in functional organization, e.g., different numbers of

disjoint regions within a given system or different systems attrib-

uted to a given cortical area, then complete subject-to-subject

alignment in brain space may be not be achievable. Again,

confirmation of this possibility will require reliable characteriza-

tion of the functional brain organization of multiple highly

sampled individuals.
Conclusion
This dataset was originally collected in order to comprehensively

and longitudinally phenotype a single human with the objective

of relating dynamics in brain function to other biological and envi-

ronmental variables. Successful attribution of such relationships

requires accurate description of the individual’s functional brain

organization. We have used this rich dataset to characterize the

functional brain organization of the individual at multiple scales

and to determine how it varies over repeated sessions. We

observed broad similarity as well as intriguing specific differ-

ences with group data. Any study reporting observations in

one or two subjects has necessarily limited generality. Specific

features described in these individuals could be explained as

idiosyncratic (perhaps reflecting willingness to undergo such

extensive self-experimentation). Therefore, we do not assign

specific meaning to the detailed features observed here. How-

ever, we believe that the reliable presence of these detailed fea-

tures in each individual must motivate further studies of this type.

These studies may inform the understanding of individual differ-

ences in brain function and, potentially, cognition. In particular,

we believe that the subject-specific approach outlined here

may be essential for understanding the functional brain organiza-

tion of unique or rare subjects (e.g., cognitive savants, rare dis-

ease populations, or brain-injured subjects like H.M.). Indeed,

the present results provide a foundation for analyses of brain-

behavior relationships that respect the specific anatomic and

functional contours of a particular individual’s brain.

EXPERIMENTAL PROCEDURES

Ethical Review

TheUniversity of TexasOffice of Research Support reviewed the procedure for

collecting the primary subject data and determined that it did not meet the re-

quirements for human subjects research as defined by the Common Rule

(45 CFR 46) or FDA Regulations (21 CFR 50 and 56), and thus, institutional

review board (IRB) approval was not necessary. Transfer of these data to

Washington University for analysis and all datasets collected at Washington

University were performedwith the approval of theWashington University IRB.

Highly Sampled Subject Characteristics

The primary subject (author R.P.) is a right-handed Caucasian male, aged

45 years old at the onset of the study. R.P. is generally healthy apart from

mild plaque psoriasis. Prior to initiation of the pilot period, R.P. had a physical

examination with full blood workup revealing no significant findings. R.P. has a

history of anxiety disorder, but no other neuropsychiatric disorders. An addi-

tional extensive dataset was acquired in a right-handed, 34-year-old Cauca-

sian male (author N.D.). N.D. was scanned at Washington University.

Primary Subject Data Acquisition

The primary data in the primary subject were collected over the course of

532 days. Scans were performed at fixed times of day: Mondays at 5 p.m.

and Tuesdays and Thursdays at 7:30 a.m. Imaging was performed with a

Siemens Skyra 3T MRI scanner using a 32-channel coil and a multi-band

EPI (MBEPI) sequence (TR = 1.16 s; 2.4 mm isotropic voxels) (Moeller et al.,

2010). Resting-state fMRI was acquired in the eyes-closed condition.

Eighty-four sessions were used in the present analyses. The first minute of

each resting state scan was discarded to exclude transient fMRI responses

evoked by the scan start and noise-cancelling headphones. A series of tasks

also were collected at various times during the scanning period (n = 51 task

fMRI sessions) including N-back, motion discrimination, object presentation,

verbal working memory, spatial working memory, and retinotopy. See Supple-

mental Information for acquisition and task fMRI details.
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To control for site/scanner differences in comparisons of the primary subject

versus the group, a validation dataset was collected at Washington University

using the same fMRI sequence as in the 120-subject group. This dataset

comprised ten 10-min runs of eyes-closed resting state data and ten 10 min

runs of eyes-open (and fixated) resting state data. All data for this subject

are available at the OpenfMRI repository (http://openfmri.org/dataset/

ds000031). See Table S1 for comparison of acquisition parameters for all

collected datasets.

Secondary Subject Data Acquisition

Subject N.D. was scanned at Washington University using a 3T TIM TRIO

scanner equipped with 12-channel coil and a single-band EPI sequence

(TR = 2.2 s; 4-mm isotropic voxels). Ten 30-min eyes-open resting-state

runs with passive fixation (total 300 min) were acquired over 10 days. Subjects

N.D. and R.P. were analyzed using the same procedures.

Group Data Acquisition and Processing

Group comparisons were based on an extant dataset of 120 subjects studied

at Washington University. These subjects have been characterized in great

detail elsewhere (Gordon et al., 2014b; Power et al., 2014; Wig et al.,

2014b). All subjects were healthy young adults (60 females, mean age = 25

years, age range = 19–32 years), native speakers of English and right handed.

Subjects were screened to exclude a history of neurological or psychiatric di-

agnoses. Informed consent was obtained in all subjects. Resting state fMRI

with eyes open and fixated on a crosshair was acquired using a 3T TIM

TRIO system equipped with a 12-channel coil and a single-band EPI sequence

(TR = 2.5 s; 4-mm isotropic voxels). The group data were processed as

described in Gordon et al. (2014b). Processing of the group data did not

include field distortion correction, as field maps were not acquired in all

subjects.

fMRI Preprocessing

Functional data were preprocessed to reduce artifact and to maximize cross-

session registration. Data were resampled to 3-mm isotropic atlas space,

including mean field distortion correction and motion correction in a single

interpolation step. Additional RSFC preprocessing followed the procedures

described in Power et al. (2014), including motion scrubbing; white matter,

ventricle, and global signal regression; and temporal filtering. See Supple-

mental Information for details of distortion correction, fMRI preprocessing,

and RSFC preprocessing.

Surface Processing and CIFTI Generation

Surface extraction and sampling of functional data to the brain surface fol-

lowed procedures similar to those previously described in Glasser et al.

(2013). Processed RSFC data were sampled to subject-specific FreeSurfer

generated surfaces and registered to a common fs-LR space (Van Essen

et al., 2012). The surface data were combined with volumetric subcortical

data into CIFTI format using Connectome Workbench. See Supplemental In-

formation for more details.

Parcellation Validation

The single-subject parcellation was generated following the procedures

described in detail in Gordon et al. (2014b) and Wig et al. (2014b) (details in

Supplemental Experimental Procedures). Parcel homogeneity was evaluated

as the percent of variance explained by the first eigenvector computed from

a principal component analysis (PCA) of the RSFC patterns from all vertices

in the parcel (Gordon et al., 2014b). The overall homogeneity of the parcellation

was compared to a null model consisting of the homogeneity computed from

1,000 random rotations of the parcellation on the surface. The validated par-

cellation forms the basis for many of the analyses reported here.

Task versus Rest Comparison

Under the assumption that task activations should correspond to RSFC-

defined parcels rather than parcel boundaries, we measured the fraction of

task-activated vertices that fell within the RSFC-defined parcels. A measured

fraction greater than the expected fraction from random placement of non-

edge parcel vertices (�70% of the cortical surface) would indicate correspon-
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dence between the parcellation and the task activations. However, to account

for the known spatial autocorrelation of BOLD fMRI data and the topological

dependencies of the parcel detection procedure, i.e., the fact that boundary

vertices will by definition neighbor other boundary vertices, we developed a

further null model to test for correspondence between task and rest. As in

the parcellation homogeneity validation (Gordon et al., 2014b), we randomly

rotated the true parcellation along the cortical surface 1,000 times. We then

computed the fraction of task-activated regions that fell within the randomly

rotated parcels. Regions with particularly low SNR as measured by mean

BOLD fMRI across all sessions (mode 1,000-normalized voxel value <800)

were ignored. From this null distribution, we derived a non-parametric statistic

of significance indicating how well each task activation corresponded to the

true parcellation.

Evaluating Parcel-wise Correlation Estimate Convergence

We used the parcels derived from all 84 sessions to extract parcel-wise resting

state time courses from each session. Cross-correlation of these time courses

was computed to define parcel-by-parcel correlation matrices representing

the areal-level brain network. A split-half procedure was used to evaluate

howmuch data were needed to obtain convergent estimates of this parcel cor-

relation matrix. The 84 sessions were repeatedly split into two randomly

selected subsets of sessions. A correlation matrix was computed using

concatenated time courses from all the sessions of one subset (n = 42;

380 min of data). The similarity between this ‘‘true’’ correlation matrix and

the correlation matrix derived from varying amounts of the remaining subset

of sessions was computed using Pearson’s correlation (rM, measured correla-

tion matrix similarity). To evaluate the effect of session variability over and

above pure scan time, we also computed the correlation matrix similarity to

matrices generated by contiguous sampling of the same number of frames

but from a larger number of sessions (e.g., 9 min from 1 session compared

with 9 min from 4.5 min of two sessions).

System Assignment

The systemorganization of the vertex/voxel-wise and parcel-wise graphswere

computed using the Infomap algorithm (Rosvall and Bergstrom, 2008),

following (Power et al., 2011), where graph nodes represent either cortical sur-

face vertices and subcortical/cerebellar voxels, or parcel-based regions of in-

terest. A cross-correlation matrix of the concatenated time courses from all

sessions defined the edges between nodes. For parcels, these time courses

were computed by averaging time courses across all vertices within the parcel.

Vertex connections within 10 mm of each other (or 30-mm between parcel

centers) were removed from consideration to avoid correlations attributable

to spatial smoothing. Geodesic distance was used for surface connections

and Euclidean distance for subcortical and interhemispheric connections.

System assignments were computed at a range of edge densities (0.05% to

5%). Systems with 400 or fewer vertices or voxels (or eight or fewer parcels)

were considered unassigned and removed from further consideration.

The Infomap procedure was also applied to the group dataset. The systems

generated in this way followed very closely the results reported in Power et al.

(2011), with the refinement of improved cross-subject alignment attributable to

surface registration. A ‘‘consensus’’ assignment was derived by collapsing

across thresholds as described in Gordon et al. (2014b), giving each node

the assignment it has at the sparsest possible threshold at which it was suc-

cessfully assigned. The subject’s Infomap-derived systems were matched to

the group consensus systems by computing the average geodesic distance

between the vertices of each system in the individual system map and the

closest vertex of each system in the group system map and vice versa. Sys-

tem-to-system assignment was determined byminimizing this distance metric

across all systems using the Hungarian algorithm (Bourgeois and Lassalle,

1971). The edge density with the least overall cost to match with the group

consensus map formed the basis for the individual consensus map. The pre-

sent network assignment procedure is not meant to provide an exhaustive

description of network organization and may not capture non-hierarchical

network features. We also do not report subcortical or cerebellar Infomap re-

sults as network assignment for these regions typically requires specialized

analysis procedures (see e.g., Buckner et al., 2011; Greene et al., 2014; Zhang

et al., 2008).

http://openfmri.org/dataset/ds000031
http://openfmri.org/dataset/ds000031
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