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Past work on relatively small, single-site studies using 
regional volumetry, and more recently machine learn-
ing methods, has shown that widespread structural brain 
abnormalities are prominent in schizophrenia. However, 
to be clinically useful, structural imaging biomarkers 
must integrate high-dimensional data and provide repro-
ducible results across clinical populations and on an indi-
vidual person basis. Using advanced multi-variate analysis 
tools and pooled data from case–control imaging studies 
conducted at 5 sites (941 adult participants, including 
440 patients with schizophrenia), a neuroanatomical sig-
nature of patients with schizophrenia was found, and its 
robustness and reproducibility across sites, populations, 
and scanners, was established for single-patient classifica-
tion. Analyses were conducted at multiple scales, including 
regional volumes, voxelwise measures, and complex distrib-
uted patterns. Single-subject classification was tested for 
single-site, pooled-site, and leave-site-out generalizability. 
Regional and voxelwise analyses revealed a pattern of wide-
spread reduced regional gray matter volume, particularly 
in the medial prefrontal, temporolimbic and peri-Sylvian 
cortex, along with ventricular and pallidum enlargement. 
Multivariate classification using pooled data achieved a 
cross-validated prediction accuracy of 76% (AUC = 0.84). 
Critically, the leave-site-out validation of the detected 
schizophrenia signature showed accuracy/AUC range of 
72–77%/0.73–0.91, suggesting a robust generalizability 

across sites and patient cohorts. Finally, individualized 
patient classifications displayed significant correlations 
with clinical measures of negative, but not positive, symp-
toms. Taken together, these results emphasize the potential 
for structural neuroimaging data to provide a robust and 
reproducible imaging signature of schizophrenia. A  web-
accessible portal is offered to allow the community to 
obtain individualized classifications of magnetic resonance 
imaging scans using the methods described herein.
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Introduction

Schizophrenia is an often devastating illness that results 
in substantial morbidity and mortality worldwide.1 
Structural brain abnormalities were noted by early anat-
omists,2,3 and results from in vivo magnetic resonance 
imaging (MRI) have supported the notion that schizo-
phrenia is a brain disorder.4,5 Despite such advances, neu-
roimaging is typically not used as part of standard clinical 
care of psychotic disorders, in part due to heterogeneous 
results. Advances in clinical practice require robust imag-
ing biomarkers of disease that can be used for diagnosis, 
determination of prognosis, and integration within trials 
of novel therapeutics.
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As imaging technology has advanced and costs have 
declined, both the sample sizes and number of studies 
examining structural brain abnormalities in schizophrenia 
have expanded dramatically. Results from small single-site 
studies have often been heterogeneous, leading investiga-
tors to integrate findings across studies using meta-analyses 
of published data from hundreds of studies and thousands 
of patients.6–12 These studies provide increasingly consistent 
evidence of widespread patterns of structural deficits in 
schizophrenia, including gray matter loss that is prominent 
in the insular, cingulate, prefrontal, and temporal cortex.

However, such retrospective, literature-based meta-
analyses are inherently limited by methodological varia-
tion. Scanner effects, processing choices, and analytic 
strategy can have a dramatic impact on results of individ-
ual studies, adding noise to results. The ENIGMA con-
sortium was created to overcome such obstacles through 
the use of prospective meta-analyses, where all sites 
perform the same data processing, quality assurance, 
and group-level analyses.13,14 Using this approach, the 
ENIGMA-schizophrenia working group recently exam-
ined subcortical volumetric abnormalities in a sample of 
over 2000 patients and a similar number of controls, and 
reported volume reductions of small-moderate effect size 
(Cohen’s d: 0.2–0.4). These findings have subsequently 
been replicated by the COCORO consortium, which used 
a similar approach.15 Despite the enormous sample size 
provided by ENIGMA, such regional analyses ultimately 
provide a coarse-grained account of structural brain 
abnormalities associated with schizophrenia, and at pres-
ent are limited to the subcortex. In contrast, one large 
recent study directly pooled data in a voxel-based, whole-
brain mega-analysis, and delineated widespread loss of 
gray matter density that was maximal in insular cortex.16

Importantly, despite accelerating efforts to pool 
structural imaging data to study psychosis, such meta- 
and mega-analyses have focused on mass-univariate 
approaches applied at the group level. Alternatively, 
brain-wide multivariate neuroanatomical patterns can 
be used to classify individuals as cases or controls using 
machine learning methods.17–19 By concisely summariz-
ing high-dimensional data, multivariate classification 
has clear advantages for clinical translation.20,21 Single-
site studies over the past decade have demonstrated that 
multivariate analyses can accurately discriminate patients 
and controls, as well as predict progression.18,19,22–26 One 
recent meta-analysis of single-site multivariate classi-
fication studies reported pooled classification sensitiv-
ity of 76%, with 79% specificity.27 However, no study 
to date has demonstrated single-subject classification in 
a large, multi-site, and multi-ethnic setting. In particu-
lar, it remains unknown whether classifiers trained on 
data acquired at one site will perform similarly on data 
acquired from a new site that was not included in the train-
ing set. Any practical clinical application would require 
an imaging biomarker that is robust to site differences, so 

that algorithms developed at academic centers could be 
applied in the community.

Here, we report results from a large-scale analysis 
of  structural MRI data from 941 participants across 5 
sites. Importantly, by pooling images instead of  derived 
measures, and uniformly processing all data via identi-
cal pipelines, we were able to harmonize structural mea-
surements and attenuate intersite differences. Building 
on prior efforts, our first hypothesis was that widespread 
structural brain abnormalities in adult patients with 
schizophrenia would be detectable across all cohorts. 
Our second hypothesis was that a reproducible neuro-
anatomical signature of  schizophrenia would be present 
across sites and diverse populations, and be detectable at 
the individual patient level. Our approach included mass-
univariate analyses of  regional volumes defined using 
state-of-the-art multi-atlas segmentation,28 optimally 
discriminative voxel based analyses (ODVBA)29,30 for 
local-multivariate pattern analysis, and individual level 
classification using consensus-based machine learning.

Methods

Participants and Image Acquisition

Data from 5 MRI studies were included in the current 
multi-site mega-analysis. All subjects were part of previous 
studies overseen by local institutional policies.31–39 Sample 
demographics of these data sets are given in table  1. 
Detailed MRI acquisition protocol information for each 
site is given in supplementary table 1. Anonymized data 
provided by the 5 sites were provided to and analyzed by 
the University of Pennsylvania’s Center for Biomedical 
Image Computing and Analytics. Raw MR scans were ini-
tially examined for motion, image artifacts, or restricted 
field-of-view. Scans were also checked for lesions, but this 
population of patients being relatively young, there were 
few subjects with lesions, and the total lesion load of these 
subjects was low. Further details of quality control proce-
dures are given in supplementary methods.

Image Processing

Following magnetic field inhomogeneity correction,40 
MR images were first segmented into a hierarchically 
organized set of 259 anatomical regions, ranging from 
total brain volume down to individual cortical gyri and 
deep structures. To parcellate the brain into anatomi-
cally defined regions, we used a highly accurate multi-
atlas consensus labeling procedure,28 which was recently 
the top-ranked method at an independent international 
competition.41 Besides regional volumes, we also calcu-
lated a set of rich regional descriptors based on intensity, 
shape, size, and texture properties of each region, to be 
used as an additional set of input features in subsequent 
multivariate classification. See supplementary methods 
for more details.
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To perform high-resolution voxel-based analysis, each 
image’s gray matter segmentation was obtained using a pre-
viously reported and validated method, MICO.42 Segmented 
maps were warped into a common template space using a 
highly accurate deformable registration (DRAMMS),43–45 
yielding regional volumetric maps (RAVENS) that quan-
tify gray matter volume at each voxel.46 We masked out sub-
cortical gray matter structures on RAVENS maps, because 
available structural T1-weighted images do not provide suf-
ficient contrast for reliable intensity-based segmentation;47 
analysis of subcortical structures was limited to the more 
robust atlas-based regional parcellation described above.

Intersite Image Harmonization

Scanner and demographic differences across MRI samples 
offer challenges for combining data. Accordingly, we har-
monized data across sites by estimating intracranial volume 
(ICV), site, age, and sex effects on each imaging measure 
within a pooled sample of controls using a linear model. 
The coefficients estimated from this model were then applied 
to the whole sample including patient data. Effectively, this 
removed the influence of site and demographic effects on 
the difference between patients and controls. Importantly, 
this control-based harmonization model was always cross-
validated, ie, it was only derived from the training set, and 
subsequently applied to the test set. Due to the small sam-
ple-sizes of the SET4 and SET5 sites, these sites were not 
included in the harmonization procedure and were set aside 
for use as validation cohorts in the classification experi-
ments described later. The harmonization procedure was 
applied independently on each input image feature, includ-
ing regional features and voxelwise RAVENS maps.

Group-Level Statistical Analyses

All group-level analyses were conducted within the har-
monized cohort (n  =  835). Regional case-control com-
parisons were conducted using 2 sample t-tests. Results 
are reported as effect sizes (Cohen’s d-statistic). Effect 
of medication and disease duration were each evaluated 
separately using linear regression. Voxelwise analyses of 
RAVENS maps used ODVBA,29,30 a local-multivariate 
pattern analysis method that has been shown in prior 
studies to have greater sensitivity than both standard 
voxel-based morphometry and searchlight-based local-
multivariate analyses. Type I error was controlled using 
the false discovery rate (FDR) correction (Q  <  0.05). 
Voxelwise effect sizes were reported in regions that were 
found to be significant by ODVBA.

Multivariate Classification

The above analyses provide a description of structural 
brain differences between schizophrenia and control 
groups. As a final step, we used machine learning tech-
niques to create a multivariate classifier that provides 

individual-level prediction of group status. We used a lin-
ear support vector machine (SVM) classifier,48 a widely 
used method with extensive validation in various similar 
high dimensional pattern classification problems. The 
input features included voxelwise values from RAVENS 
maps, regional volumes, and an extended set of shape, 
intensity and texture features computed for each region. 
A  classifier was run separately for each feature type 
using 10-fold cross-validation. A  consensus prediction 
was then obtained by combining the predictions of each 
classifier through a weighted averaging based on their 
cross-validated individual performances. This procedure 
was performed using an external 10-fold cross-validation 
(supplementary figure 4), except in experiments that use 
independent training and testing sets.

To maximize generalizability, we applied the SVM clas-
sification using default parameters (C = 1), without feature 
selection. (Optimization of such parameters would likely 
further improve accuracy, albeit at the risk of overfitting 
the data.) See supplementary methods for further details.

Multivariate models were trained under 3 different con-
ditions to evaluate the impact of pooling data across sites 
and training/testing on different sites. First, models were 
trained and tested separately within each site using 10-fold 
cross-validation. Second, a single 10-fold cross-validated 
SVM classification analysis was conducted using the 
complete sample of harmonized pooled data. Third, we 
performed training/testing on different sites through leave-
one-site-out cross-validation. This procedure included 
applying a model trained on the complete pooled data 
to the 2 independent validation cohorts. This procedure 
aimed to evaluate the generalizability of the classifier to 
a totally new data set sampled from an entirely different 
population and scanner. Importantly, in this procedure 
harmonization was done only within the training set, and 
the control-based regression model was applied to the test 
set. Before training the classifier, the training and testing 
sets were z-scored separately, with the assumption that the 
test set has a similar patient to control ratio as the train-
ing set. For all analyses, individual-subject classification 
performance was evaluated using receiver operating char-
acteristic (ROC) curves. Classification performance was 
summarized using both the area under the curve (AUC) 
and the classification accuracy metrics.

Finally, to assess the clinical relevance of the MRI-
based classification, we investigated correlations between 
the classifier output and clinical symptom scores of indi-
vidual subjects. The symptom scores for different sites were 
obtained using common symptom rating scales in schizo-
phrenia research: the Scale for the Assessment of Positive 
Symptoms,49 the Scale for the Assessment of Negative 
Symptoms,50 and the Positive And Negative Syndrome 
Scale.51,52 Table 1 details the available type of scores for each 
site. The scores were normalized by z-scoring them within 
each site and pooled together. For this analysis, individual-
ized pseudo-probabilities of having the neuroanatomical 
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signature of schizophrenia were estimated from the clas-
sifier’s output using sigmoid fits. These pseudo-probabili-
ties correspond to the degree to which a given individual’s 
brain appears to match the schizophrenia pattern.

Results

Regional and Voxelwise Analyses Reveal Distributed 
Structural Brain Abnormalities in Schizophrenia

Mass-univariate regional analyses of pooled data delin-
eated robust abnormalities of brain structure that survived 
FDR correction. The structures that show the most signifi-
cant group differences, both in positive and negative direc-
tions, are shown in figure 1. Patients with schizophrenia 
had marked ventricular expansion, as well as larger pal-
lidum volumes. Cortical gray matter volume loss was also 
quite evident, with maximal effects in the prefrontal cor-
tex (superior frontal gyrus; d = 0.51) as well as temporal 
cortex, parietal cortex, insula, and amygdala. The effect 
sizes of volumetric changes were strongly correlated across 
sites (pairwise correlation coefficient range: 0.71–0.81), 
indicating strong consistency despite protocol, scanner, 
and demographic differences across sites. A complete list 
of all regions with significant group differences (q < 0.05) 
is provided in supplementary table 2. Site-specific analysis 
results are provided in supplementary table 3.

High-resolution voxelwise analyses of harmonized 
RAVENS maps in the pooled sample using ODVBA 
delineated a distributed pattern of volume loss (figure 2), 
and showed good agreement with the results of the ROI-
based analysis (supplementary figure 1). The results of the 
ODVBA analyses performed using each data set separately 
are shown in supplementary figure 2. The effects found for 
individual data sets were consistent with each other and 
with the pooled analysis, but less significant than the pooled 
analysis results, emphasizing the enhanced power of the 
pooled analysis compared to the smaller single-site analyses.

We also evaluated the impact of disease duration and 
antipsychotic load (chlorpromazine equivalents53) on the 
regional data (supplementary table 4). In contrast to the 
very robust and distributed group differences, medication 
effects were only seen in the frontal operculum, where 
higher medication dose was associated with lower vol-
ume. Duration of illness was associated with larger lat-
eral ventricles and pallidum, as well as reduced volume 
of regions including the middle frontal gyrus, parahip-
pocampal gyrus, and hippocampus.

Multivariate Classification is Accurate Using Data 
Pooled Across Sites

Classification results are detailed in table 2 for the within-
site, pooled, and between-site experiments. Compared to 
individual within-site classification, pooled classification 
resulted in higher classification accuracy for each of SET1, 
SET2, and SET3, with 0.02 to 0.045 increase in AUC. The 
ROC curve for the cross-validated classification within the 

pooled-data is shown in figure 3a. These results indicate 
that pooling data across sites is not only viable, but it actu-
ally improves the classification results. The leave-site-out 
cross-validation procedure on SET1, SET2 and SET3, ie, 
using models trained exclusively on data collected at dif-
ferent sites, achieved AUC values between 0.78 and 0.80, 
which were comparable to pooled or within site cross-
validation results. Besides, combination of training data 
from 2 separate external sites consistently outperformed 
training on each external site individually, suggesting 

Fig. 1.  Key regional volume differences between patients (SCZ) 
and controls (NC). ROIs with the highest effect sizes (absolute 
effect size ≥ 0.29) between controls (N = 448) and patients 
(N = 387), calculated using pooled, harmonized data. For a 
complete list of all regions with significant group differences 
(q < 0.05), see supplementary table 1.

Fig. 2.  Voxelwise gray matter volume differences between patients 
(SCZ) and controls (NC). Effect-size maps between controls 
(N = 448) and patients (N = 387) calculated using pooled, 
harmonized data. The highlighted regions that show significant 
group differences were calculated using the output of ODVBA 
thresholded at the FDR-corrected significance value of q < 
0.05. Note: The location of the crosshairs is unchanged between 
each of the cross-sections. A color figure is available online at 
Schizophrenia Bulletin.
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that pooling a larger number of data sets for training 
helps to increase accuracy and robustness of the classi-
fier. Classification results for the independent validation 
cohorts, SET4 and SET5 were also high (accuracies 0.738 
and 0.774), further emphasizing the feasibility of using 
models trained exclusively on data collected at a different 
site. A comparison of the relative performance of differ-
ent types of input feature sets used in the classification 
experiments is shown in supplementary figure 3.

Classification Probability Is Related to Negative 
Symptoms

We found a significant positive correlation (r  =  .228, 
P = .00003) between the individual pseuoprobabilities of 

having neuroanatomical pattern and the negative symp-
tom scores of the subjects (figure  3b). No significant 
correlations were found between the positive symptom 
scores and the classification pseudoprobabilities, nor was 
there a significant relationship to the duration of illness.

Discussion

In a large-scale analysis of data pooled across sites, we 
demonstrated that the widespread structural brain abnor-
malities associated with schizophrenia can be used for 
accurate single-subject classification using machine learn-
ing techniques. Application of state-of-the-art consensus-
based classifiers on different types of imaging features 
yielded high performance, and indicated that multivariate 

Fig. 3.  Classification results. (a) ROC curve for patient vs control classification. The classification was performed using the pooled 
data and with leave-10%-out cross-validation through consensus-voting of all input feature sets, ie, RAVENS maps, regional volumes, 
and region-based descriptors. (b) Correlation between classifier output and negative clinical symptom scores (SANS for SET1, PANSS 
Negative for sets 2 and 3). Classification scores were obtained by converting the distances of the test samples from the discrimination 
hyperplane to pseudo-probabilities using sigmoid fits. Negative symptom scores were z-scored within data sets and then pooled together. 
The correlation for classifier score with negative symptom score was equal to r = .228 (P = .00003). No correlations were found between 
positive symptom scores and the classifier output (r = −.019, P = .73).

Table 2.  Classification Results

Train Sitea

Test Site, AUC/Accuracy

SET1 SET2 SET3 SET4 SET5

SET1 0.767/0.696 0.765/0.694 0.801/0.707 0.588/0.643 0.831/0.758
SET2 0.770/0.720 0.872/0.808 0.791/0.710 0.826/0.810 0.931/0.806
SET3 0.782/0.701 0.793/0.706 0.802/0.732 0.639/0.524 0.876/0.806
Other sitesb 0.785/0.723 0.805/0.739 0.804/0.731 0.731/0.738 0.912/0.774
Pooled 0.813/0.736 0.893/0.803 0.829/0.762 N/A N/A

Note: Color codes show the set of results for the 3 different settings in classification experiments (blue: within site classification with 
leave 10% out cross-validation; green: classification with pooled data with leave 10% out cross-validation; red: classification with training/
testing on different sites). N/A = not applicable.
aSites 1, 2, and 3 comprised the discovery cohort. Sets 4 and 5 comprised the validation cohort.
bFor sites 1, 2, and 3, other sites indicates that 2 of the 3 sites were pooled for training, and the third site was used for testing. For sites 4 
and 5, other sites indicates the pooled data from sites 1, 2, and 3 used for training.
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neuroanatomical signatures have the potential to become 
a quantitative imaging biomarker for schizophrenia. 
Importantly, these procedures remained accurate when 
trained and tested on data from completely different sites, 
populations, and scanners, highlighting the reproducibil-
ity of this imaging signature and, therefore, its transla-
tional potential.

Structural Brain Abnormalities in Schizophrenia Are 
Widespread and Visible at Multiple Scales

Capitalizing on a sample of nearly 1000 participants 
amassed via a multi-site, mega-analytic design, we provide 
robust evidence of widespread structural brain abnor-
malities in schizophrenia. These were present on multi-
ple scales, and were evident in both analyses of regional 
volumes as well as high-resolution voxelwise analyses. 
Brain abnormalities in schizophrenia have been studied 
using brain imaging for 3 decades.2,4 While abnormalities 
have been consistently documented by single-site studies, 
the relative degree to which different brain regions were 
impacted has varied considerably by sample. Large-scale 
meta-analyses have pooled data,8,10–12,54 but they have been 
limited by important differences in data processing across 
studies. The ENIGMA and COROCO consortia, as well 
the study of Gupta et al.16 have overcome this limitation 
with rigorous meta-analyses of data processed in consis-
tent fashion (albeit not always with identical pipelines 
harmonized on raw data), and recently provided evidence 
of subcortical volume loss of moderate effect size.14,15 Our 
analysis of subcortical structures provided convergent 
results to those provided by ENIGMA and other stud-
ies, including loss of hippocampus, thalamus, and amyg-
dala volume; expansion of the pallidum; and ventricular 
enlargement. However, we build upon such findings from 
the subcortex and demonstrate cortical abnormalities of 
often large effect size,11,16 with a maximal deficit in the 
prefrontal cortex. In line with previous studies, duration 
of illness was associated with increasing expansion of the 
pallidum and ventricles.9,11,14,55 In contrast to the lack of 
medication effects found in ENIGMA, but in line with 
a previous large-scale retrospective meta-analysis, higher 
dose of antipsychotics was associated with larger palli-
dum and reduced gray matter volume in several frontal 
regions.9,11,18

Multivariate Classification of Individuals Is Accurate 
Even Using Data From Different Scanners and Sites

While mass-univariate analyses provide a valuable descrip-
tion of the structural brain abnormalities associated with 
schizophrenia at the group level, they cannot function as 
biomarkers in individual patients. Accordingly, our pri-
mary focus was to use machine learning techniques to 
create a classifier that leveraged the complex multivariate 
pattern of structural deficits.21 The classifier we described 

here could differentiate patients and controls with a high 
degree of accuracy, with levels comparable to those previ-
ously reported in single-site studies.18,24,25,27,56

A highly significant positive correlation was found 
between the classification output and negative symptom 
scores. Thus, the probability to which an individual’s 
multivariate pattern of structural anatomy was classified 
as consistent with schizophrenia was correlated with the 
burden of negative symptoms. In contrast, there was not 
a significant correlation with positive symptoms. This 
result is consistent with extensive prior research linking 
negative symptoms to structural brain abnormalities in 
schizophrenia.57 To the degree to which both structural 
brain abnormalities and negative symptoms portend a 
poor response to standard pharmacotherapies,58 these 
results may assist in stratification within clinical trials of 
new therapies which integrate structural neuroimaging 
and machine-learning tools.

Critically, classification results were obtained with 
established algorithms and methods, to ensure that the 
resultant biomarker would be accessible for widespread 
use. Nonetheless, it is likely that better classification could 
potentially be achieved via parameter tuning, feature 
selection, and use of nonlinear kernels or deep-leaning 
approaches. However, such gains might also carry lead 
to greater model complexity, higher risk of over-fitting 
to training data, and reduced generalizability to new data 
sets. Such generalizability is of paramount importance 
for clinical translation.

Indeed, the single most important finding from this 
approach was that multivariate classifiers could retain 
accurate prediction even when trained and tested on data 
from separate scanners. Machine learning can be quite 
robust to intersite variations, by virtue of depending on 
the relative weights, ie, contrasts, of a complex pattern 
rather than on absolute volume-based thresholds, which 
can be impacted by slight variations of image contrast 
across scanners. These results suggest that models trained 
on data collected at specialized academic centers have the 
potential to be applied to data acquired in the community 
in order to calculate an imaging biomarker of schizophre-
nia. Importantly, leave-one-site-out was tested without 
the need for harmonization of the testing data with the 
training data set, but only via z-scoring within the new 
test site data. The classification pipeline is available in 
our image processing portal as a web-accessible applica-
tion (CBICA Image Processing Portal: https://ipp.cbica.
upenn.edu/). The web application allows users to submit 
single or multiple T1-weighted MRI images and outputs 
individualized scores, computed using automatically 
extracted imaging features and the presaved classification 
model from the harmonized training data. Thus, for any 
new data set, this web portal provides the scientific and 
clinical community with a freely accessible quantitative 
index of the imaging-based biomarker described here.
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Limitations and Future Directions

Although this study benefited from a large sample size and 
advanced analytics, certain limitations should be noted. 
While developing a distinctive imaging signature of schizo-
phrenia is an important endeavor, its value in predicting 
disease progression, treatment response, and in assisting 
differential diagnosis needs to be investigated in future 
studies. We note that the proposed imaging index, which 
can be calculated at an individual level using the provided 
online tool, cannot be used as a direct diagnostic index, as 
it has not been validated in heterogeneous clinical popula-
tions. Applications to samples that are not enriched for 
schizophrenia may result in a high false-positive rate. Like 
most other psychiatric conditions, schizophrenia is asso-
ciated with substantial co-morbidity of other psychiatric 
conditions (such as mood disorders). Unfortunately, co-
morbid conditions were not consistently recorded across 
the participating sites, and thus could not be evaluated in 
the present analysis. Future studies should evaluate co-
morbidity of other psychiatric conditions on classification 
performance. Expanded data sets that seek to parse het-
erogeneity within diagnostic groups will be critical.39,59–61 
Such work is particularly important for studies of youth 
with psychosis-spectrum or prodromal symptoms, where 
there is substantial diversity of clinical outcomes.55,62–66 
Recent work67 using heterogeneity analyses offers hope 
that semi-supervised machine learning methods can pro-
vide a better understanding of the heterogeneity of neu-
roanatomical signatures of schizophrenia. Finally, future 
work that combines large-scale imaging data sets in youth 
with well-characterized longitudinal clinical follow up 
with advanced multivariate analytics will be critical areas 
of focus moving forward.

Conclusions

Using a pooled mega-analytic strategy, the present data 
provide among the most robust evidence to date of struc-
tural brain abnormalities in adults with schizophrenia. 
Furthermore, these results emphasize that such signals 
can be used to derive highly accurate multivariate mod-
els that allow for discrimination at the level of individual 
patients, thereby providing a robust neuroanatomical sig-
nature of schizophrenia. Critically, this signature remains 
accurate even when the classifier is trained using data 
from different sites and scanners. Taken together, our 
findings highlight the accelerating promise of imaging-
based biomarkers in major neuropsychiatric illnesses 
such as schizophrenia. The classifier used in this paper 
for classification is publicly available online at the CBICA 
Image Processing Portal.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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Supplementary Methods. 
Quality Check Method and Results 

A set of well-defined quality control (QC) procedures were applied to all datasets.  These QC procedures 
included both automated flags and manual verification, which were systematically applied on both raw and 
processed images. Specifically, as part of the manual QC, all raw images were examined for motion, image artifacts, 
or restricted field-of-view. They were also checked for lesions, but this population of patients being relatively young, 
there were few subjects with lesions. Similarly, processed images were manually evaluated for pipeline failures, 
including failures of brain extraction, poor segmentation, or errors in image registration. In addition to manual QC, 
automated QC procedures flagged images based on outlying values of quantified metrics (for example, regional 
volume); flagged images were subsequently re-evaluated by an image analyst. A few subjects were also excluded for 
lacking basic demographic data. In total, scans of n=95 subjects were excluded during the initial or final QC process 
(45 from SET 1, 30 from SET 2, 11 from SET 3, 6 from SET 4, and 3 from SET 5), to give the final sample shown 
in Table 1 in the main manuscript. 
 
Calculation of Additional Features for Multivariate Classification 
We computed an extended set of region-based features derived from the anatomical regions of interest (ROIs) 
segmented using MUSE1. Specifically, the region-based feature sets consisted of the following sets: 

- Intensity: Minimum, maximum, mean, median, standard deviation, skewness, and kurtosis values for each 
ROI. 
- Shape: Elongation, flatness and roundness for each ROI. 
- Size: Volume, surface area and spherical radius for each ROI. The size features were corrected for 
individual intra-cranial volume (ICV) to account for inter-subject differences in head size. 
- Texture: Energy, entropy, homogeneity, inertia, cluster shape, cluster prominence for each ROI2-5.  

 
As additional input feature sets for the multivariate classification, we also used voxel values of regional volumetric 
maps (RAVENS)6, which allow accurate quantification of local anatomical differences or changes, on a common 
atlas space. The categories of regional volumetric features used in the classification were the following: 

- RAVENS:  CSF, GM and WM RAVENS maps calculated via deformable registration (DRAMMS) 7, 8 to 
common atlas space and normalized for ICV. 
-Affine RAVENS: CSF, GM and WM RAVENS maps calculated via affine-registration with 12 degrees of 
freedom to common atlas space and normalized for ICV. 
 

Consensus-Voting Classification Procedure 
A consensus-voting procedure is used for the classification, where classifiers are first trained on each feature set 
independently to generate an ensemble, and the results are fused into a single classification score through weighted 
voting of individual scores from each classifier. The weight of a feature set is determined based on the leave-10%-
out cross-validated classification accuracy using only that single feature set.  The ensemble classifier is applied with 
external leave-10%-out cross-validation. All experiments are repeated 10 times. The classification performance for 
individual feature sets and the ensemble are shown in Supplementary Figure 3. 
 
 
 
 
 
 



 
Supplementary Table 1.  MRI Scanner and Image-Acquisition Protocol Information 
 

Site 
Field 
Strength Brand 

Protocol 
Name 

Repetition 
Time 

Echo 
Time 

Inversion 
Time 

Flip 
Angle 

Field of 
View 

Slice 
Thickness 

SET1 3T Siemens MPRAGE 1810 ms 3.51 ms 1100 ms 9 240 x 180 1 mm 
SET2 3T GE BRAVO 8.2 ms 3.2 ms 450 ms 12 256 x 256 1 mm 
SET3 1.5T Siemens MPRAGE 11.6 ms 4.9 ms N/A N/A 512 x 512 1.5 mm 
SET4 3T Siemens MPRAGE 2530 ms 3.5 ms N/A 7 256 x 256 1 mm 
SET5 3T Siemens MPRAGE 2350 ms 3.44 ms N/A 7 256 x 256 1 mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Table 2. Regional effect sizes1 and significance values for the 
group comparisons between controls and patients. All values are corrected for 
multiple comparisons using false discovery rate (FDR) correction. 

ROI 
Effect Size (Left / 

Right) 

Corrected 
significance 

level (q-
Value) 

Percent 
Difference 

Pallidum 0.63 (0.59 / 0.59) 5.30E-17 5.74 
3rd Ventricle 0.52 (n/a) 6.25E-12 37.37 
Superior Frontal Gyrus Medial Segment -0.51 (-0.42 / -0.42) 1.09E-11 -3.89 
Inf Lat Vent 0.50 (0.47 / 0.47) 4.30E-11 29.85 
Opercular Part Of The Inferior Frontal Gyrus -0.47 (-0.41 / -0.41) 4.23E-10 -5.49 
Parietal Operculum -0.44 (-0.42 / -0.42) 6.64E-09 -5.68 
Planum Temporale -0.43 (-0.38 / -0.38) 7.39E-09 -4.91 
Frontal Operculum -0.41 (-0.36 / -0.36) 3.38E-08 -4.37 
Transverse Temporal Gyrus -0.41 (-0.41 / -0.41) 3.71E-08 -6.54 
Anterior Insula -0.4 (-0.38 / -0.38) 1.25E-07 -2.98 
Lateral Ventricle 0.39 (0.39 / 0.39) 1.73E-07 30.49 
Central Operculum -0.39 (-0.35 / -0.35) 1.95E-07 -3.24 
Posterior Insula -0.39 (-0.31 / -0.31) 1.95E-07 -3.55 
Middle Frontal Gyrus -0.34 (-0.30 / -0.30) 4.31E-06 -2.36 
Amygdala -0.34 (-0.26 / -0.26) 7.56E-06 -3.64 
Anterior Limb Of Internal Capsule 0.34 (0.36 / 0.36) 7.56E-06 3.33 
Hippocampus -0.30 (-0.32 / -0.32) 8.54E-05 -2.46 
Lingual Gyrus -0.30 (-0.23 / -0.23) 8.54E-05 -2.43 
Middle Temporal Gyrus -0.29 (-0.24 / -0.24) 1.12E-04 -2.06 
Planum Polare -0.29 (-0.28 / -0.28) 1.47E-04 -2.67 
Fusiform Gyrus -0.29 (-0.23 / -0.23) 1.56E-04 -2.27 
Posterior Limb Of Internal Capsule 0.28 (0.26 / 0.26) 1.57E-04 2.31 
Superior Temporal Gyrus -0.28 (-0.25 / -0.25) 1.64E-04 -2.34 
Precuneus -0.28 (-0.27 / -0.27) 2.33E-04 -2.04 
Posterior Orbital Gyrus -0.27 (-0.27 / -0.27) 2.78E-04 -3.05 
Medial Frontal Cortex -0.27 (-0.19 / -0.19) 3.76E-04 -3.27 
Posterior Cingulate Gyrus -0.27 (-0.26 / -0.26) 3.76E-04 -2.47 
Postcentral Gyrus -0.26 (-0.27 / -0.27) 6.11E-04 -2.34 
Calcarine Cortex -0.25 (-0.22 / -0.22) 7.29E-04 -3.87 
Cuneus -0.23 (-0.18 / -0.18) 2.32E-03 -2.51 
Occipital Fusiform Gyrus -0.23 (-0.13 / -0.13) 2.82E-03 -2.31 
Precentral Gyrus -0.23 (-0.17 / -0.17) 2.90E-03 -1.71 
Parahippocampal Gyrus -0.22 (-0.17 / -0.17) 2.90E-03 -1.89 
Thalamus Proper -0.22 (-0.20 / -0.20) 3.56E-03 -1.32 

Angular Gyrus -0.22 (-0.18 / -0.18) 3.85E-03 -1.96 
Anterior Orbital Gyrus -0.21 (-0.12 / -0.12) 4.38E-03 -2.92 
Inferior Occipital Gyrus -0.21 (-0.20 / -0.20) 4.69E-03 -2.46 
Superior Parietal Lobule -0.20 (-0.19 / -0.19) 6.38E-03 -1.95 
1 Cohen’s d. A negative value indicates reduced volume in schizophrenic patients relative to healthy controls. 



 
Supplementary Table 2. Regional effect sizes1 and significance values for the 
group comparisons between controls and patients (continued) 

ROI Effect Size (Left / Right) 

Corrected 
significance 

level (q-
Value) 

Percent 
Difference 

Basal Forebrain -0.20 (-0.13 / -0.13) 6.86E-03 -3.12 
Supplementary Motor Cortex -0.20 (-0.20 / -0.20) 6.86E-03 -1.96 
Superior Frontal Gyrus -0.20 (-0.22 / -0.22) 8.88E-03 -1.63 
Accumbens Area -0.19 (-0.21 / -0.21) 9.96E-03 -2.35 
Entorhinal Area -0.17 (-0.09 / -0.09) 2.85E-02 -2.00 
Supramarginal Gyrus -0.17 (-0.11 / -0.11) 2.85E-02 -1.59 
Middle Cingulate Gyrus -0.16 (-0.14 / -0.14) 3.92E-02 -1.38 
Putamen 0.15 (0.16 / 0.16) 4.17E-02 1.27 
Subcallosal Area -0.15 (-0.14 / -0.14) 4.17E-02 -2.25 
4th Ventricle 0.15 (n/a) 4.29E-02 3.91 
Middle Occipital Gyrus -0.15 (-0.11 / -0.11) 4.29E-02 -1.67 
Triangular Part Of The Inferior Frontal 
Gyrus -0.15 (-0.18 / -0.18) 4.29E-02 -2.11 
 

1 Cohen’s d. A negative value indicates reduced volume in schizophrenic patients relative to healthy controls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Table 3. Regional effect sizes1 for the group comparisons between 
controls and patients, using pooled data versus using each dataset individually. 
All values are corrected for multiple comparisons using false discovery rate (FDR) 
correction. 
 Site    
ROI Pooled SET1 SET2 SET3 
Pallidum 0.63 0.77 0.97 0.35 
3rd Ventricle 0.52 0.47 0.59 0.58 
Superior Frontal Gyrus Medial Segment -0.51 -0.40 -0.87 -0.51 
Inf Lat Vent 0.50 0.33 0.84 0.47 
Opercular Part Of The Inferior Frontal 
Gyrus -0.47 -0.60 -0.50 -0.35 
Parietal Operculum -0.44 -0.36 -0.55 -0.50 
Planum Temporale -0.43 -0.58 -0.45 -0.31 
Frontal Operculum -0.41 -0.42 -0.55 -0.34 

Transverse Temporal Gyrus -0.41 -0.36 -0.66 -0.39 
Anterior Insula -0.40 -0.32 -0.74 -0.31 
Lateral Ventricle 0.39 0.37 0.71 0.26 
Central Operculum -0.39 -0.40 -0.55 -0.30 
Posterior Insula -0.39 -0.37 -0.83 -0.24 
Middle Frontal Gyrus -0.34 -0.27 -0.41 -0.42 
Amygdala -0.34 -0.39 -0.18 -0.33 
Anterior Limb Of Internal Capsule 0.34 0.46 0.17 0.28 
Hippocampus -0.30 -0.43 -0.24 -0.15 
Lingual Gyrus -0.30 -0.29 -0.47 -0.23 
Middle Temporal Gyrus -0.29 -0.34 -0.45 -0.14 
 

1Cohen’s d. A negative value indicates reduced volume in schizophrenic patients relative to healthy controls. 

 

 

 

 

 

 

 

 



Supplementary Figure 1. Comparison of regions with significant group 
differences between controls and patients, for voxelwise versus regional 
analyses. 

The maps show regions where significant gray matter differences were found between 
patients and controls, at the FDR-corrected threshold of q = 0.05. Voxelwise differences 
were found via ODVBA9, 10 using GM RAVENS6 maps. Regional differences were 
obtained by running univariate t-tests on regional segmentations provided by MUSE1. 
Regions shown in green were found to be significant in both analyses. In red areas only 
region-based analysis found significance, while blue areas were significant only in the 
ODVBA analysis. When interpreting the spatial specificity of these maps, please note 
that for the regional analysis results the significance level of an ROI was assigned 
uniformly to all voxels within that ROI. 

 
 

 
 
 
 
 
 



Supplementary Figure 2. Voxelwise group comparisons between controls and 
patients using GM RAVENS6 maps, for individual sites versus pooled data 
Color maps show regions with significant group differences obtained via ODVBA9, 10, 
corrected for multiple comparisons (FDR-corrected q<0.05). In the highlighted areas 
controls have higher RAVENS values, indicating higher GM volume. 

 
 
 
 
 
 
 
 
 
 



Supplementary Table 4. Associations of disease duration and CPZ dosage 
equivalents with regional volumes  
 Duration Illness CPZ Dose Equivalents 
ROI correlation q-Value 1 correlation q-Value 1 

Frontal Operculum -0.15 0.038* -0.227 0.018* 
Medial Orbital Gyrus 0.022 0.784 -0.209 0.018* 
Middle Frontal Gyrus -0.016 0.855 -0.203 0.018* 
Pallidum 0.234 0.001* 0.203 0.018* 
Subcallosal Area -0.075 0.349 -0.203 0.018* 
Temporal Lobe Wm 0.036 0.678 0.176 0.052 
Central Operculum -0.103 0.189 -0.174 0.052 
Opercular Part Of The Inferior Frontal Gyrus -0.168 0.018* -0.164 0.074 
Lateral Ventricle 0.205 0.005* 0.154 0.098 
Anterior Limb Of Internal Capsule 0.024 0.773 -0.147 0.111 
Angular Gyrus -0.113 0.150 -0.145 0.111 
Middle Cingulate Gyrus 0.088 0.282 -0.143 0.111 
Postcentral Gyrus Medial Segment -0.184 0.008* -0.142 0.111 
3rd Ventricle 0.126 0.103 0.141 0.111 
Inf Lat Vent 0.006 0.947 0.139 0.114 
Entorhinal Area -0.015 0.855 0.133 0.133 
Accumbens Area -0.096 0.233 -0.128 0.151 
Middle Temporal Gyrus -0.191 0.007* -0.124 0.168 
Basal Forebrain -0.037 0.673 -0.122 0.171 
Posterior Orbital Gyrus -0.109 0.173 -0.116 0.203 
Superior Frontal Gyrus Medial Segment 0.024 0.773 -0.115 0.209 
Postcentral Gyrus -0.122 0.115 -0.111 0.219 
Triangular Part Of The Inferior Frontal Gyrus 0.12 0.120 -0.111 0.219 
Parietal Operculum 0.048 0.565 -0.108 0.229 
Medial Frontal Cortex 0.007 0.942 -0.105 0.240 
Lateral Orbital Gyrus -0.073 0.349 -0.102 0.253 
Lingual Gyrus -0.104 0.189 -0.1 0.253 
Anterior Orbital Gyrus -0.059 0.479 -0.099 0.253 
Posterior Insula -0.118 0.125 -0.099 0.253 
Planum Polare 0.003 0.987 -0.089 0.325 
Supramarginal Gyrus -0.056 0.512 -0.089 0.325 
Superior Parietal Lobule -0.079 0.347 -0.088 0.325 
Inferior Occipital Gyrus 0.001 0.998 -0.083 0.346 
Supplementary Motor Cortex -0.071 0.362 -0.083 0.346 
4th Ventricle 0.045 0.606 0.08 0.364 
Anterior Insula -0.074 0.349 -0.074 0.408 
Superior Temporal Gyrus 0.037 0.673 -0.069 0.450 
Precuneus -0.165 0.019* -0.064 0.489 
Thalamus Proper -0.022 0.784 -0.059 0.518 
Hippocampus -0.148 0.038* -0.058 0.518 
Posterior Cingulate Gyrus -0.145 0.044* -0.056 0.526 
Amygdala -0.096 0.233 0.054 0.526 
Posterior Limb Of Internal Capsule Inc. Cerebral 
Peduncle 0.03 0.720 0.046 0.611 
 

1 Correlations significant at FDR-corrected q<0.05 denoted with an asterisk. 

 



Supplementary Table 4. Associations of Disease Duration and CPZ Dosage 
Equivalents with Regional Volumes (Continued) 

 Duration Illness CPZ Dose Equivalents 
ROI correlation q-Value 1 correlation q-Value 1 

Calcarine Cortex 0.05 0.565 -0.043 0.641 
Superior Frontal Gyrus 0.085 0.307 -0.042 0.641 
Precentral Gyrus -0.03 0.720 -0.041 0.651 
Inferior Temporal Gyrus -0.164 0.019* -0.029 0.794 
Planum Temporale -0.083 0.317 -0.027 0.804 
Cuneus 0.077 0.349 -0.026 0.804 
Parahippocampal Gyrus -0.193 0.007* 0.026 0.804 
Putamen 0.089 0.282 0.022 0.838 
Temporal Pole -0.135 0.067 -0.022 0.838 
Frontal Lobe Wm 0.04 0.673 0.018 0.882 
CSF 0.186 0.008* 0.015 0.889 
Precentral Gyrus Medial Segment -0.054 0.518 0.015 0.889 
Occipital Fusiform Gyrus 0.07 0.365 -0.014 0.889 
Transverse Temporal Gyrus 0.026 0.759 0.012 0.889 
Fusiform Gyrus -0.076 0.349 0.009 0.897 
Middle Occipital Gyrus -0.069 0.378 -0.008 0.897 
 
1 Correlations significant at FDR-corrected q<0.05 denoted with an asterisk. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 3. Classification performance of individual feature sets and 
the ensemble classifier on the pooled data. Each boxplot shows the result of running 
10 separate leave-10%-out cross-validation experiments on a particular feature set. The 
consensus classifier was constructed by combining individual classifiers using each 
feature set through weighted voting. See Supplementary Methods for details. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 4. Outline of image processing and cross-validated 
classification using ensemble of features  
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