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Human fMRI signals exhibit a spatial patterning that contains detailed information about a person’s mental
states. Using classifiers it is possible to access this information and study brain processes at the level of in-
dividual mental representations. The precise link between fMRI signals and neural population signals still
needs to be unraveled. Also, the interpretation of classification studies needs to be handled with care. None-
theless, pattern-based analyses make it possible to investigate human representational spaces in unprece-
dented ways, especially when combined with computational modeling.
Introduction
The invention of functional magnetic resonance imaging (fMRI)

marked an important milestone in cognitive neuroscience

(Ogawa et al., 1990). fMRI made it possible to measure human

brain activity with a considerably higher spatial resolution than

previous noninvasive neuroimaging techniques, such as electro-

encephalography (EEG). In its early days, fMRI was used mainly

to study brain activity at the level of macro-anatomical regions

based on group data that were spatially smoothed and anatomi-

cally warped to standard templates. Statistical analyses were

performed separately for each brain voxel using a general linear

model (GLM; Friston et al., 1995b). In this mass-univariate

approach, local spatial dependencies are nonetheless present

due to the smoothing and the spatial spread of the hemodynamic

response. Themain focus was not on single-voxel activity, but on

smooth, regional differences in brain activity between experi-

mental conditions.

However, smoothed group results were not suitable for

addressing a key question in cognitive neuroscience, that

is, how specific and individual cognitive representations (or

mental contents) are encoded and transformed in the human

brain. For example, activity in lateral prefrontal regions has

been shown to be increased under higher versus lower working

memory load (Braver et al., 1997). Prefrontal activity might

reflect the storage of working memory contents across a delay

(Lee et al., 2013). Alternatively, the signal might reflect unspecific

control or updating signals, while the contents might be stored

elsewhere in the brain. To distinguish between these two possi-

bilities, it is important to test whether the signal patterns in pre-

frontal cortex allow one to distinguish between different working

memory contents (Lee et al., 2013). The key problem that

impeded content-based fMRI studies was that neural encoding

of specific contents occurs in cortical columns at a submillime-

ter scale (Mountcastle, 1957), which is below the spatial resolu-

tion of standard fMRI, especially when data are smoothed and
averaged across subjects. A few work-arounds were developed

to attempt to study content processing with neuroimaging tech-

niques, such as fMRI adaptation or tagging by frequencies or

categories (Grill-Spector et al., 1999; O’Craven et al., 1999; To-

noni et al., 1998). However, the applicability of category-tagging

is highly limited to a few categories (Downing et al., 2006), and

fMRI adaptation leaves the underlying physiological mecha-

nisms unclear (De Baene and Vogels, 2010).

Pattern-based fMRI analysesmake it possible to address con-

tent-based processing in the human brain without relying on

selective adaptation or frequency tagging. The idea is to directly

study the link between mental representations and correspond-

ing multivoxel fMRI activity patterns. This content-selective

spatial patterning is conceptually related to theories of neural

representation involving population codes, where each content

involves the distributed activation of more than one representa-

tional unit (Pouget et al., 2000). The aim of this primer is to pro-

vide a concise introduction to the key concepts of pattern-based

analysis. Another goal is to present an overview of challenges

and limitations in the interpretation of decoding results, espe-

cially with respect to underlying neural population signals. Where

appropriate, the reader is pointed to more in-depth reviews on

specialized topics, such as cognitive neuroscience applications

(Haynes and Rees, 2006; Norman et al., 2006; Tong and Pratte,

2012), neural coding (Haxby et al., 2014; Kriegeskorte, 2009;

Kriegeskorte and Kievit, 2013; Naselaris et al., 2011; Serences

and Saproo, 2012), and methods and algorithms (Pereira et al.,

2009; Mur et al., 2009).

Spatial Patterning of fMRI Signals
The spatial resolution of fMRI is highly limited compared to inva-

sive measurements of neural activity. A single voxel with a

size of a few millimeters can sample up to several million neu-

rons (Logothetis, 2008). The spatial resolution of standard fMRI

measurements is also lower than would be required to sample
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Figure 1. Spatial Patterning of fMRI Signals
(A) Histogram of orientation biases T of 100 voxels
in V1 for two orthogonal orientations. The orienta-
tion bias T reflects the degree to which a voxel
responds more strongly to either a left-tilted or a
right-tilted orientation stimulus (Haynes and Rees,
2005).
(B) A scatterplot of biases of the 100 voxels for two
independent measurement periods. This reveals a
high correlation and thus reproducibility.
(C) This map shows a flattened representation of
V1 where the orientation eliciting the strongest
response is color coded (see inset) for each voxel
(Kamitani and Tong, 2005).
(D) A simulatedmap of cortical orientation columns
where the dominant orientation at each location is
color coded. Note the coarse sampling of the
columns by the comparatively large fMRI voxels
(black grid; Boynton, 2005).
(E) Due to slight irregularities in the orientation
columnar map, each voxel samples a slightly
different number of cells of each orientation pref-
erence (shown here as a histogram). This is known
as the biased sampling model (Haynes and Rees,
2005; Kamitani and Tong, 2005).
(F) High- and low-pass filtering of fMRI signals
at different filter cutoffs and the resulting orienta-
tion classification accuracy. Low-pass filtering at
increasingly lower spatial scales decreases the
orientation information in human V1 (blue curve).
High-pass filtering removes the lower spatial fre-
quencies but still maintains orientation information
(red curve; Swisher et al., 2010; filter size shown as
millimeters; error bars represent SEM).
(G) Macroscopic biases contribute to voxel selec-
tivity (Freeman et al., 2011). The experiment on
the left presented grating stimuli with different
orientations. The map shows which orientation
yielded the strongest responses in different re-
gions of early visual cortex. For comparison, the

right shows the results of a standard retinotopic mapping stimulus with color-coded visual angle. Regions coding the horizontal meridian (blue/purple in the right
map) respond strongest to vertical gratings, as would be expected if the map on the right were predominantly due to radial biases (Freeman et al., 2011).
(H) Patterning of fMRI signals in temporal cortex during observation of two objects (left, chairs; right, shoes). Hot/cold colors indicate stronger/weaker responses
compared to themean across all conditions. The brain response patterns averaged separately for even and odd runs are similar for the same objects, but different
between objects (Haxby et al., 2001).
(I) Ocular dominance (left) and orientation maps (right) in human primary visual cortex obtained with ultra-high-field fMRI at 7 T (Yacoub et al., 2008; Copyright
2008 National Academy of Sciences, USA). The color on the left indicates which eye a given region responds to most strongly (red, right eye; blue, left eye). The
color on the right indicates the orientation that elicits the strongest response in a given voxel (as in C–E). Both maps are obtained using a contrastive analysis by
assessingwhether voxels respond stronger to one versus all other conditions. It is currently impossible with fMRI to obtain voxels that are solely dependent on left
or right eye stimulation.
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individual human cortical columns that have a sub-millimeter

spatial scale (Adams et al., 2007). Due to this comparatively

low resolution, it might seem surprising that the responses of

single voxels can be modulated by stimulus features that are

encoded at a columnar level (see Figures 1A–1C; Haynes and

Rees, 2005; Kamitani and Tong, 2005). For example, voxels in

V1 can respond stronger to a visually presented grating of one

orientation than to others (Haynes and Rees, 2005; Kamitani

and Tong, 2005). Figure 1A shows an example of orientation

biases T for 100 voxels in a single person’s primary visual cortex.

Participants viewed grating stimuli that were either left tilted

or right tilted. The T value expresses the degree to which each

voxel responds stronger to either left- or right-tilted gratings.

Several voxels express orientation biases that are stronger

than would be expected by chance (arrows in Figure 1A). The

orientation biases are reproducible across different measure-

ments (Figure 1B). Figure 1C shows a spatial map of a single

person’s V1/V2 region where each voxel is color coded accord-
258 Neuron 87, July 15, 2015 ª2015 Elsevier Inc.
ing to the orientation that elicits the strongest response (Kamitani

and Tong, 2005).

Several explanations for this patterning of fMRI signals have

been offered. In the biased sampling account (also misleadingly

referred to as ‘‘hyperacuity’’ or ‘‘aliasing’’), the differential re-

sponses reflect the fact that each voxel samples cells arranged

in cortical columns. Due to slight fluctuations in the columnar

maps, each voxel will sample a slightly different number of

each cell type (Figures 1D and 1E; Boynton, 2005; Haynes and

Rees, 2005; Kamitani and Tong, 2005). For example, one voxel

might sample more cells coding for horizontal orientations,

whereas another might sample more cells coding for vertical ori-

entations. As a consequence, voxels are expected to respond

slightly more to one orientation than to others, which is the

case (Haynes and Rees, 2005; Kamitani and Tong, 2005). The

degree of this orientation bias depends on the spatial distribution

of cells with different tuning properties within individual voxels. If

a voxel samples a homogenous population of neurons with
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Figure 2. Multivariate Pattern Classification
(A and B) Hypothetical brain activity measured in
eight voxels for two different conditions while a
person is viewing images of cats or dogs (labels).
The response amplitudes in the first two voxels are
plotted in a two-dimensional coordinate system,
separately for both conditions (red/green).
(C and D) A distribution of measurements can be
separable from the brain activity in single voxels
(vertical dotted and horizontal dashed lines) if the
marginal distributions are not overlapping (C, red/
green distributions on the axes), but not if they are
overlapping (D).
(E) In this case, a linear decision boundary (dashed
line) can be used to separate the response distri-
butions by taking into account the activity in both
voxels simultaneously. Here a linear decision
boundary was estimated using linear discriminant
analysis (LDA; Fisher, 1936) that maximizes the
between-class to within-class variance. Support
vector machines (SVMs, see Duda et al., 2000)
are also commonly used as linear classifiers.While
LDA and SVM differ in the algorithms for param-
eter estimation, the classification itself is identical
in both cases and involves a linear projection of
the data onto a decision axis.
(F) In certain cases as here, a linear decision
boundary is not suitable for classification and
nonlinear classifiers can be employed (see Duda
et al., 2000).
(G) Multivariate regression can be used in cases
where one is interested in continuous rather than
discrete labels. The plot shows the continuous
label as a graded color code. The regression is
computed by projecting a sample (s) to the deci-
sion axis that explains maximal variance in the
continuous labels.
(H) Cross-validation. The classifier is trained on
part of the data (training data) and then applied to
a statistically independent test dataset. This yields
a predicted label for each sample that can be
compared to the true label (right). The proportion
of correct classifications then yields a classifica-
tion accuracy that can be tested against chance
performance. The bottom right graph shows a plot

of accuracy obtained for an increasing number of voxels. The more voxels enter the classification the higher the accuracy. At some point the classification
saturates. The weights of a linear classifier can be used to plot a weight map on the cortical surface (bottom left, taken fromKahnt et al., 2010). The different colors
indicate the weights of the classifier. In this study, linear classification weights were either positively or negatively predictive of high reward (Kahnt et al., 2010).
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similar response profiles, then the voxel tuning will be strong. If it

samples neurons with a very divergent set of properties, the

voxel-level tuning will be very weak (Chaimow et al., 2011).

This biased sampling account has been debated for several

reasons. For example, if the voxel tuning effects were to reflect

a sampling of cortical columns, one would intuitively expect

that smoothing substantially decreases the effect. Generally

speaking, the rationale is that the random biases between neigh-

boring voxels should average out with smoothing (but see Kami-

tani and Sawahata, 2010). Experimental measurements of the

effects of smoothing have yielded quite divergent results. In

one report (Op de Beeck, 2010), smoothing actually improved

orientation information that could be decoded from fMRI signals

V1. In contrast, a different study compared high-pass and low-

pass filtering and found a dominant spatial scale of information

around 2–10 mm (Figure 1F), which is compatible with biased

sampling (Swisher et al., 2010).

Several other studies have found evidence that voxel tuning

might reflect macroscopic biases instead of local sampling
biases (Freeman et al., 2011; Freeman et al., 2013; Sasaki

et al., 2006). The idea is that, for example, orientation prefer-

ences of voxels are influenced by global biases in orientation

processing across different regions of the visual field, such as

the oblique effect (Furmanski and Engel, 2000) or radial bias ef-

fect (Sasaki et al., 2006; Freeman et al., 2011; see Figure 1G).

This in turn might give a false impression of columnar sampling.

The question of the origin and spatial scale of the patterning of

fMRI signals is still under debate (Alink et al., 2013; Wang

et al., 2014). Patterning also has been observed for high-level vi-

sual features, such as object stimuli in occipito-temporal cortex

(Figure 1H; Haxby et al., 2001) or for reward representations in

orbitofrontal cortex (Figure 2H, bottom left; Kahnt et al., 2010).

One interesting future direction is to attempt to go beyond

biased sampling and directly image columnar signals in human

fMRI using higher-resolution imaging sequences (Figure 1I).

Columnar imaging has been reported for eye-of-origin and orien-

tation (Yacoub et al., 2008) and motion direction (Zimmermann

et al., 2011), but improving day-to-day reliability using optimized
Neuron 87, July 15, 2015 ª2015 Elsevier Inc. 259
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MRI imaging sequences remains an important challenge (Zim-

mermann et al., 2011). To further clarify the spatiotemporal dy-

namics with which fMRI samples cortical tissue, a combination

of invasive recordings and computational modeling is needed

(Chaimow et al., 2011; Gardner, 2010; Kriegeskorte et al.,

2010; Nevado et al., 2004; Shmuel et al., 2010). One important

question is how the vascular geometry samples the spatial

topography with which individual neurons are distributed on

the cortex (Gardner, 2010).

Analyzing Patterned fMRI Signals
To analyze the full information contained in spatially distributed

fMRI signal patterns, a multivariate (as opposed to mass-univar-

iate) framework is required (Allefeld and Haynes, 2015; Cox and

Savoy, 2003; Friston et al., 1995a; Haynes and Rees, 2006;

Haxby et al., 2001; Haxby et al., 2014; Kamitani and Tong,

2005; Kriegeskorte et al., 2006; Mitchell et al., 2003; Norman

et al., 2006; Tong and Pratte, 2012). In multivariate pattern clas-

sification (Figure 2), brain activity is analyzed at the level of

patterns consisting of a number of voxels. The multivariate sam-

ples of brain activity are then assigned labels that indicate the

condition under which they were acquired. For example, a sam-

ple acquired while someone was thinking about a cat or a dog

would be labeled ‘‘cat’’ or ‘‘dog,’’ respectively. Classification

algorithmswhere such a class structure is imposed by the exper-

imenter are referred to as ‘‘supervised learning,’’ as opposed to

unsupervised learning algorithms (e.g., Kohonen, 1989).

Figures 2A and 2B showhypothetical fMRI signals in eight vox-

els in visual cortex while a participant is viewing a picture of a cat

(A, red) or dog (B, green). To understand how the classifier oper-

ates, it can help to consider the samples as defining points in a

coordinate system. Each sample of brain activity can be thought

of as a pattern vector, which is a one-dimensional array of

numbers. This allows one to mathematically treat the list of acti-

vation values as values on different dimensions of a coordinate

system. The first two entries in the pattern vectors (x,y), i.e.,

the measurements in the first two voxels, are shown in Figure 2

as scatterplots. The repeated measurements of the response

yield two clouds of points, one for each category. The task of

the classifier is to find a way to separate the two point distribu-

tions while at the same time avoiding overfitting (Bishop, 1995;

Duda et al., 2000; see below).

Figure 2C shows a case where the two response distributions

are separable based on each voxel (x,y) alone using a suitable

decision boundary that is parallel either to the x or y axis. This

single-voxel separation is possible because the marginal distri-

butions (red and green) are not overlapping. However, in many

cases, the marginal distributions for both conditions are highly

overlapping (Figure 2D), and thus the classification cannot be

performed by only considering one voxel. A multivariate solution

is required that takes into account the activation values in both

voxels simultaneously. One approach is to estimate a linear de-

cision boundary (Figure 2E, dashed line) that partitions the

response plane into regions with different labels. Two common

ways to estimate linear decision boundaries are linear discrimi-

nant analysis (LDA; Fisher, 1936) and linear support vector ma-

chines (SVMs; for details, see Allefeld and Haynes, 2015; Duda

et al., 2000; Pereira et al., 2009; and Mur et al., 2009). For clas-
260 Neuron 87, July 15, 2015 ª2015 Elsevier Inc.
sification, both LDA and SVM use a weight at each voxel to line-

arly project the data points to a single decision axis (top right of

Figure 2E). However, the algorithms for estimating the weights

from the training data are different. LDA identifies projection

weights that maximize the between-class to within-class vari-

ance. SVM identifies weights that define a so-called maximum

margin hyperplane (see Duda et al., 2000 for details). For visual-

ization, the weights of the classifier for each voxel can be plotted

as a weight map (Figure 2H, bottom left). In certain cases,

response distributions cannot be sufficiently partitioned using

single linear decision boundaries (Figure 2F). In these cases,

nonlinear approaches such as nearest-neighbor classifiers or

nonlinear SVMs can be used (for an overview, see Duda et al.,

2000).

The logic of classification requires that the training data can be

grouped into discrete categories, each with a unique label. How-

ever, often one might be interested in predicting a continuous

(rather than discrete, categorical) variable from a multivariate

signal (Figure 2G). This can be achieved using multivariate

regression approaches. Here the decision boundary is replaced

by a continuous variable to which each sample is projected

(Smola and Schölkopf, 2004; Chu et al., 2011; Marquand et al.,

2014).

To train the classifier, only a part of the samples is used, the

training data. The remaining samples, constituting test data,

are left out and used to assess whether the classifier can

correctly assign the labels (Figure 2H). The reason for the sepa-

ration into training and test data is to see whether the classifier

can generalize to new test samples. The obtained decision

boundary is applied to the individual samples in the left-out

and statistically independent test dataset (Figure 2H, test

data). The proportion of test samples that is correctly predicted

is known as the classification accuracy. Typically, the procedure

is repeated again using a different partitioning of data into

training and test. This is known as cross-validation. It is abso-

lutely vital that the training and test data are independent and

stationary in order to avoid overfitting and circular inference.

To test whether the classifier can indeed extract information

from the data, the classification accuracy is then compared to a

chance accuracy (Figure 2H, bottom right), which is the propor-

tion of samples that would have been labeled correctly based

on guessing alone. In the case of two alternative categories, the

chance accuracy is 0.5; in the case of n categories, it is 1/n.

Even a classifier operating at chance level will have some vari-

ability in the accuracy for a fixed sample size. Thus, it is important

to statistically test whether the accuracy is significantly above

chance. For testing against chance, permutation tests have

proven to be more valid than binomial tests or t tests (Nichols

and Holmes, 2002; Noirhomme et al., 2014; Pereira and Botvi-

nick, 2011; Schreiber and Krekelberg, 2013; Stelzer et al.,

2013). The idea of these tests is to permute the assignment be-

tween labels and samples and thus obtain a distribution of

chance accuracies against which a specific accuracy can be

tested. Permutation testing has additional advantages because

it requires only very weak distributional assumptions. Further-

more, it can help to reveal biases in the processing pipeline. For

example, if the independence between training and test data

were violated, this could lead to above-chance baseline-level
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Figure 3. Spatial Selection for Pattern
Classification
(A) In whole-brain classification, all voxels enter
the pattern analysis simultaneously (shown here
in red). Some form of dimensionality reduction
is typically required for whole-brain classifiers
(Mourão-Miranda et al., 2005).
(B) A region of interest (ROI) can be chosen based
on functional localizers (the red region V1 is ob-
tained by retinotopic mapping).
(C) ROIs also can be obtained based on anatom-
ical criteria. The color-coded regions here are
obtained using automated anatomical labeling
(Tzourio-Mazoyer et al., 2002).
(D) Using wavelet pyramids (Hackmack et al.,
2012) or other forms of spatial filtering (Swisher
et al., 2010), it is possible to perform classification
at multiple spatial scales and assess which scales
contain the most information. The figure shows a
brain image at different spatial scales used for a
wavelet analysis (see Hackmack et al., 2012 for
details).
(E) Searchlight analyses. Classification is per-
formed separately for each local spherical cluster
of voxels (indicated here by the circle). The clas-
sification accuracy is then entered into a single-
subject searchlight accuracy map (middle), and
the procedure is repeated across all brain loca-
tions. The maps for different subjects can then
be averaged and subjected to a second-level

statistical test (bottom). The result is a map (bottom left) that shows where in the brain local clusters of voxels contain significant information about the chosen
conditions (see also Challenges and Pitfalls). Searchlight classification can be performed in 3D voxel space (Kriegeskorte et al., 2006) or on the cortical surface
(Chen et al., 2011; Oosterhof et al., 2010), which can improve localization accuracy.
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accuracies. In such a case, the whole brain might mistakenly

appear to have decodable information about a cognitive variable.

What Goes into the Classifier?
An important choice in pattern classification is the format in

which the data are entered into the classifier. The first choice

is which voxels to use, i.e., the spatial selection (Figure 3). One

might intuitively believe that it is safe to enter all available

brain voxels into the classifier. Such whole-brain classification

(Figure 3A), however, suffers from the curse of dimensionality

(e.g., Scott, 1992) because of the high number of voxels in

fMRI experiments (typically >100,000). Due to the low number

of samples (i.e., time points) and the high number of dimensions

(voxels), the activity inmany voxels spuriously correlates with the

labels. There are several ways to reduce the dimensionality of the

whole-brain classification problem. One established way is to

preprocess the data using a principal component analysis

(PCA) and to enter a smaller set of components into the classifier

(e.g., Mourão-Miranda et al., 2005). A different approach is to use

an algorithm that automatically selects only a subset of voxels for

the classification (De Martino et al., 2008). This is known as

feature selection.

After dimensionality reduction or feature selection, classifiers

generally still reflect information distributed across large-scale

brain networks. There are several approaches that allow for

more localized assessment of information coding. One way is

to use regions of interest (ROIs), defined either functionally, say

with retinotopic mapping (Sereno et al., 1995; Figure 3B), or

based on anatomical criteria (Tzourio-Mazoyer et al., 2002;

Figure 3C). A different approach is to spatially filter the data,

for example, using three-dimensional (3D) wavelet pyramids
(e.g., Hackmack et al., 2012; Figure 3D). This allows one to

compare the information encoded at different spatial scales.

Another way to assess the information encoded in small

regional networks is to use searchlight decoding (Figure 3E; Hay-

nes et al., 2007; Kriegeskorte et al., 2006). In this approach, a

classifier is applied to a small local cluster of voxels, typically a

small spherical voxel cluster with a radius of a few millimeters

centered on one brain location. The resulting classification accu-

racy at this brain location is entered into the corresponding posi-

tion in a 3D brain map. The procedure is then repeated for

different searchlight centers, thus yielding a whole-brain search-

light map that depicts the information contained at each local

cluster of voxels. These searchlight analyses make the simpli-

fying assumption that information is contained in local clusters

of voxels, possibly reflecting local population codes (Pouget

et al., 2000). However, they cannot access information encoded

in a more distributed fashion across multiple brain regions (see

also Challenges and Pitfalls).

A second important choice is the level of temporal aggregation

(Figure 4). The individual samples entering a classifier analysis

can stem from single fMRI volumes, single trials, single blocks,

entire scanning runs, or even from single subjects (see Figure 4

for details). It is even possible to use entire spatiotemporal pat-

terns for classification (Mourão-Miranda et al., 2007). The level

of temporal aggregation is important when it comes to ensuring

the statistical independence between training and test datasets

in each of the cross-validation folds (Figure 4; see also Mumford

et al., 2014). An extreme violation of independence would be to

mix data from closely spaced trials in training and test data

(Figure 4A). In this case, the temporal independence would be

violated for several reasons. The signals in different trials would
Neuron 87, July 15, 2015 ª2015 Elsevier Inc. 261
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Figure 4. Temporal Selection of
Classification Samples Based on Single
Events or on Extended Blocks of
Stimulation
(A) Schematic fMRI responses to two different
stimulus conditions (red/green) in an event-re-
lated design, where individual trials occur more
rapidly than the temporal extent of the hemody-
namic response function. The brain responses
to different trials are thus overlapping. Typical
approaches to defining classification samples
include the voxel-wise responses in single fMRI
volumes, averages within a selected time window
after onset of the trial, parameter estimates of
canonical hemodynamic response functions for
each trial, and parameter estimates of a general
linear model for the entire scanning run. Due to the
temporal overlap of trials and the autocorrelation
of the fMRI signal, great care has to be taken to
avoid spillover of information between training and
test datasets. For this reason, cross-validation is
best performed across different scanning periods
(runs) between which the scanning is briefly
stopped.
(B) In block designs, similar conditions are pre-
sented in extended temporal sequences. Here
similar choices for samples can be made as for
single events, with either single-volume activity,
temporal averages across blocks, parameter es-
timates across individual blocks, or parameter
estimates across entire runs. In contrast to event-
related designs, for block designs a block-wise
cross-validationmight be an option if the danger of
temporal overlap of information can be excluded.
However, the safer option is to use a splitting
based on runs also here in order to avoid spillover
of information between training and test data.
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be correlated due to the low-frequency autocorrelation of the

fMRI signal, the temporal extent of the hemodynamic response,

plus potential cognitive factors such as slow fluctuations in

arousal or attention. These dependencies are lower for block de-

signs (Figure 4B) but can still be observed (e.g., Goldfine et al.,

2013). The safest solution is to perform a cross-validation across

independent fMRI measurement periods (runs) for both trial-

based and block-based experiments (Mumford et al., 2014).

Challenges and Pitfalls
Despite the significant advances made possible by fMRI decod-

ing, it is important to also highlight a number of challenges and

pitfalls in the design and interpretation of classification experi-

ments. The question of what it means if a cognitive factor can

be decoded from an fMRI signal pattern needs to be approached

with care. Neither the information contained in single voxels nor

in ensembles of voxels can be directly related to the information

encoded in single neurons. The sampling of neural activity by

fMRI voxels is highly indirect and involves themagnetization level

of blood as a marker of neural activity, a pooling of many thou-

sand neurons per voxel, and a sluggish and nonlinear hemody-

namic response (Logothetis and Wandell, 2004). There are

many complicating factors, as outlined below.

Interpreting Accuracies: Underestimating Information

An absence of information at the level of fMRI does not mean

that the local neural populations do not contain information.
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For example, if neurons with different tuning properties were

mixed randomly in a salt-and-pepper fashion, then no macro-

scopic information would be expected at the voxel level

(Chaimow et al., 2011). Also, in an extreme case, a single

neuron might contain substantial information that is drowned

out by other neurons only contributing noise (e.g., Etzel et al.,

2013). The tuning of a single voxel thus depends on the

sampling of neurons in a complex way that can only be unrav-

eled by direct invasive measurement of population signals in

combination with computational modeling (Chaimow et al.,

2011; Kriegeskorte, 2011; Nevado et al., 2004; Ramı́rez

et al., 2014).

Interpreting Accuracies: Overestimating Information

There are several ways in which an observed accuracy with

fMRI might overestimate the information that is computationally

available at the neural level. For example, a voxel might sample

a large blood vessel that drains a large population of neurons

(Gardner, 2010) that share no direct anatomical connections.

This could yield an aggregation of information that is not com-

putationally used at the neural level. Also, the low sampling

rate of fMRI signals and the sluggishness of the hemodynamic

response might temporally integrate information beyond the

relevant timescales of neural signal processing. Classifiers

based on whole-brain activity could potentially be integrating

information from widely disparate brain regions that are not

anatomically connected, thus reflecting information that is only
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Figure 5. Overfitting of Training Data
(A) Two different nonlinear polynomial classifiers
are fit to a two-class dataset (red and green) for
activity measured at two voxels, x and y. One
classifier is a second-degree and one a tenth-de-
gree polynomial. The tenth-degree polynomial has
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(C) Schematic plot of the crossover effect of ac-
curacies. The tenth-degree polynomial (squares)
performs better in the training data, but worse in
the test data than the second-degree classifier
(circles).
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accessible to the scientist as an external observer, but not

computationally usable within the brain itself.

Interpreting Accuracies: Comparing Different Brain

Regions

There are several factors that limit the comparison of accuracies

between different brain regions. For example, the size of regions

generally is different, so the number of voxels entering into the

classifier and thus the dimensionality of the classification problem

differs. Also, the sensitivity of fMRI to neural activity in different

brain regions might be quite variable, which is known as the local

hemodynamic response efficiency (Logothetis and Wandell,

2004). The signal-to-noise levels also generally differ between re-

gions, thus further limiting the interpretation of accuracies. For

each classification task and each region, there might thus be a

different noise ceiling that limits the maximum possible accuracy

given the noise in the data (Kay et al., 2008; Nili et al., 2014).

Interpreting Accuracies: Other Limitations

There are more reasons why the overall level of accuracy of a

classifier is difficult to interpret (Allefeld and Haynes, 2014). For

example, the obtained accuracy depends on the partitioning of

data into training and test. Less training data generally yield

lower accuracies because the classifier has less ability to learn

an optimal decision boundary. Factors such as experimental

design efficiency (Josephs and Henson, 1999; Liu et al., 2001),

the level of temporal aggregation (see above), or smoothing

(Op de Beeck, 2010; Swisher et al., 2010) also have an impact

on the accuracies obtained. Accuracy has an absolute ceiling

at 100%, whereas it could be interesting to assess distances be-

tween pattern vectors obtained for two classes even beyond

perfect classification. For this reason, multivariate distancemea-

sures between brain activity patterns might be more suitable to

assess the information contained in voxel patterns (Allefeld and

Haynes, 2014; Kriegeskorte et al., 2006).

Circularity and Overfitting

The importance of ensuring independence between training and

test data was already discussed above. Any dependencies are

likely to cause false-positive classification of the test data even

in the absence of information (e.g., Mumford et al., 2014). Due

to leakage of information between training and test data, the

classifier would be training and testing on the same data. This

is referred to as ‘‘double dipping’’ and it constitutes a circular

inference (Kriegeskorte et al., 2009).
Classification analyses also might suffer from a related phe-

nomenon known as overfitting. As outlined above (Figure 2),

the aim of a classifier is to separate the neural response distri-

butions belonging to several classes. Overfitting can occur if a

too-complex classifier is fit to the training dataset that works

well in the training data, but then fails to generalize to the

test data. Figure 5 shows examples of two classifiers, a sec-

ond-order and a tenth-order polynomial applied to a training

dataset. The tenth-order polynomial has more parameters

and fits the training data better than the second-order polyno-

mial. However, when this classifier is applied to an indepen-

dent test dataset, it becomes apparent that the second-order

polynomial generalizes better. The reason is that the tenth-

order polynomial is more flexible and also adjusts to the

spurious noise in the training data. Testing the generalizability

of a classifier on independent test data thus protects against

overfitting.

However, cross-validation does not protect against overfitting

if different classifiers are tried out on the same data. For

example, a researcher might try out different options for spatial

or temporal selection of samples, or might try out different clas-

sifiers (e.g., linear versus nonlinear) and different partitioning

schemes of training and test data. Once several classifiers

have been tried out, overfitting only can be revealed by testing

the accuracy on a further independent test dataset. While over-

fitting is not unique to fMRI classification (Kriegeskorte et al.,

2009) or even to neuroscience (Ioannidis et al., 2001), it is

exacerbated by the high number of free parameters in fMRI

classification.

One way to maintain the flexibility of trying out different classi-

fiers while at the same time avoiding such overfitting is to use a

nested cross-validation (e.g., Pereira et al., 2009). The idea is to

divide the data into training and test, and then to further subdi-

vide the training data into a second-level training and test set

in order to try out different classification approaches (say linear

versus nonlinear classification). Then, the best classifier from

the second level can be used for classification of the test data

at the first level. This allows for optimization of classification

while at the same time avoiding overfitting and false-positive

classification. A different solution to such overfitting is to use

an approach that substantially decreases the number of free pa-

rameters (e.g., Allefeld and Haynes, 2014).
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Figure 6. The Role of Noise Filtering in the Interpretation of Weight Maps
The activity in two voxels plotted as arbitrary fMRI signal units as a function of volumes. One of the voxels contains weak label-related information and one
contains no information. Both are contaminated by the same noise source (which could reflect scanner noise or background activity). By subtracting the signal of
the pure-noise voxel from the low-information voxel (middle plot), it is possible to recover substantially more label-related information. The right plot shows the
data in both voxels plotted as x and y coordinates. The x voxel has weak information and slightly separated marginal distributions, and the y voxel has no in-
formation and fully overlapping marginal distributions. A linear classifier can nonetheless achieve high classification accuracy, which is only possible if the signal
from the pure-noise voxel is included. For further details see Haufe et al. (2014).
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Interpreting Classification Maps

Another challenge lies in the interpretation of the maps obtained

through classification analyses. In a linear classifier such as LDA

or SVM, theweight at each voxel directly reflects the contribution

of that voxel to the classification result (provided the data are

normalized separately for each voxel). The weights at each voxel

are often plotted as a weight map (Figure 2H, bottom left). How-

ever, when the output of a classifier is statistically tested against

chance level, this pertains to the classifier as a whole, and does

not permit a conclusion as towhether an individual voxel contrib-

uted significantly to the result. To test whether a single voxel con-

tributes significantly to the performance, it is necessary to test

whether it makes a significant difference if the voxel is included

in the classifier (for a related approach, see Pereira et al., 2009).

A further complication in interpreting weight maps lies in the

fact that a voxel might have a significant weight despite not hav-

ing label-related information. Voxels that are not informative on

their own can contribute to a classification by de-noising or by

removing the effects of global variations in unspecific internal

states (Haufe et al., 2014; Yamashita et al., 2008). At first sight,

this might appear counter-intuitive, but it can be demonstrated

easily (see Figure 6). Consider one voxel that contains informa-

tion about a label, but the signal in this voxel is contaminated

by noise that is not related to the label (Figure 6, low information).

This noise could have many sources, ranging from thermal noise

in MRI recording to ongoing physiological background activity

that is unrelated to the task (e.g., Raichle, 2010). Although this

noise impairs the classification, it might sometimes be possible

to regain high classification rates by subtracting the signal

from a second voxel that purely reflects the same noise source

but does not contain label-related information (Figure 6, pure

noise). In this case, a linear classifier would assign a positive

weight to the informative voxel and a negative weight to the noise

voxel. But theweight at this second voxel would only reflect a de-

noising process and not the presence of information. The plot on

the far right in Figure 6 shows this from the viewpoint of a classi-

fier. The voxel on the y axis carries no information about the two

categories, and the voxel on the x axis has low information (note

that the centroids for the classes only differ along the x axis, but

not the y axis). Nonetheless, the activity in the noise voxel con-

tributes to the decision boundary (Haufe et al., 2014; Yamashita

et al., 2008).
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Searchlight analyses (Figure 3E; Kriegeskorte et al., 2006)

also yield maps that can cause confusion and need to be inter-

preted with care. Each point in a searchlight map depicts the

accuracy with which mental contents can be decoded from

local clusters of voxels surrounding that point. They depict

the centers of informative voxel clusters, but not the informative

voxels themselves. Within these clusters, information might be

encoded in quite different ways, and this might or might not

include the voxel at the searchlight center itself (Etzel et al.,

2013). For example, an informative searchlight center could

even reflect a single informative voxel somewhere in the

searchlight, a phenomenon referred to as the ‘‘needle-in-the-

haystack effect’’ (Viswanathan et al., 2012). The resulting

maps also depend on processing options. For example, larger

searchlights yield more extended, smoother maps (e.g., Chen

et al., 2011).

Controlling for Nuisance Variables

Due to the increased sensitivity of multivariate analyses, a more

detailed control for confounding factors is also necessary. In

contrast to GLM analyses, classifiers can extract information

even if the sign of an effect randomly varies across subjects

(Todd et al., 2013). For example, in task-set decoding, a classifier

might be able to exploit subject-by-subject differences in diffi-

culty between tasks that average out in the mean (say one sub-

ject might find task 1 easier, whereas another subject might find

task 2 easier; Todd et al., 2013). Thus, more elaborate controls

are needed to avoid that decoding results merely reflect

nuisance variables, such as difficulty or attention. Two solutions

are to either regress out the nuisance variable (Todd et al., 2013;

Woolgar et al., 2014), or to directly compare decoding for

nuisance variables and for the cognitive factor of interest (Wis-

niewski et al., 2014).

Emerging Directions: Encoding, Reconstruction, and
Computational Modeling
Multivariate pattern classification of fMRI signals has been

applied in diverse fields of cognitive neuroscience (see Haxby

et al., 2014; and Tong and Pratte, 2012 for recent reviews). The

logic of classification has proven useful in studying generaliza-

tion between conditions (Cichy et al., 2012), compositionality

(Reddy et al., 2009; Reverberi et al., 2012), temporal buildup of

information (Polyn et al., 2005; Soon et al., 2008), and information
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(A) An ideal reconstruction would require obtaining the conditional probability p(sjr) of a visual image s given a brain response r. However, obtaining p(sjr) for a set
of ten-by-ten black-and-white random images is not tractable because it would require measuring the brain activity to each of 2100 possible visual images.
(B) Decoding models simplify the mapping problem by decoding one image point si at a time, say by using a linear decoder D applied to the full set of voxels r.
(C) Encoding models simplify the full mapping by predicting the response in a single voxel rj at a time based on a spatial filter F optimized for that voxel.
(D) Reconstruction of arbitrary symbols and letters on a ten-by-ten grid using an ensemble of decoding models for each position in the visual field (Miyawaki et al.,
2008). The top row shows the presented pattern and beneath are eight reconstructions. The bottom row shows the mean across the reconstructions.
(E) Reconstruction of letters with encoding models and stimulus priors (taken from Schoenmakers et al., 2013). The maximum likelihood estimate (ML) is
equivalent to the stimulus s with maximal probability p(rjs) (thus neglecting priors). The prior is the stimulus s with highest prior probability p(s). The ML and the
prior can be combined to yield the maximum a posteriori estimate (MAP), p(sjr). The inclusion of the prior clearly improves the estimation.
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flow between brain regions (Heinzle et al., 2011) and even be-

tween brains (Anders et al., 2011).

One limitation in many pattern-based fMRI studies is that only

a small set of different cognitive states is considered, for

example, which of several images a person is viewing (Haxby

et al., 2001) or which of two intentions a person is holding (Hay-

nes et al., 2007). The reason is that it is only possible to obtain

brain responses for a limited number of cognitive states within

the limited scanning time of a typical fMRI experiment. An impor-

tant question is thus whether it might be possible to go beyond

only a few alternatives and study the encoding of large numbers

of cognitive states. Due to the limited scanning time, this would

require generalizing from training data obtained with few classes

to new cognitive states. One solution to this problem is to define

a formal space in which the cognitive states occur. This could be

a space defining a large set of possible images, or any other

domain that can be suitably formalized in a model, such as, for

example, sounds (Schönwiesner and Zatorre, 2009) or seman-

tics (Mitchell et al., 2008).
One field that has pioneered this approach is visual image

reconstruction (Thirion et al., 2006; Miyawaki et al., 2008; Nase-

laris et al., 2009; Nishimoto et al., 2011; Schoenmakers et al.,

2013). Image reconstruction refers to the attempt at decoding

arbitrary images (rather than a few known samples) from brain

signals. To understand the scope of the challenge this poses, it

can help to first dramatically simplify the problem and consider

random images of ten-by-ten black-and-white squares (Figures

7A–7C, visual field). The task of reconstructing an arbitrary

pattern of ten-by-ten black-and-white squares that a person is

viewing might seem easy, but it constitutes a formidable chal-

lenge (Attneave, 1954). The number of such potential black-

and-white images is 2100 (or z1030). Even if the brain response

to each image could be measured in one second, it would take

1030 seconds (or 1013 times the age of the universe) to measure

the brain response (Figures 7A–7C, visual cortex) to each stim-

ulus once. Visual reconstruction thus faces the problem that it

is impossible to measure the brain response associated with

each possible image.
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One way to solve this problem is to use decoding models

(Miyawaki et al., 2008). In this case, a decoder is used to predict

the brightness at a single local region of the visual field (and

not the entire image space) from the ensemble of fMRI voxels

in visual cortex (Figure 7B). The classifier is based on the full

ensemble of fMRI voxels in visual cortex (Figure 7B). In the

case of a linear classifier, each voxel would be assigned a weight

in order to optimally predict a single region of the visual field.

Here, the problem of knowing the brain response associated

with each full ten-by-ten image is simplified by learning the brain

response associated with each local image region at a time. This

simplification makes the assumption that responses to each re-

gion of the visual field are independent, which is not the case at

the level of single cells (Carandini and Heeger, 2011; Albright and

Stoner, 2002). Such decoding models have been successfully

applied to the reconstruction of ten-by-ten-pixel patterns of let-

ters from signals in early visual cortex (Figure 7D;Miyawaki et al.,

2008).

Another solution to reconstruction is to use encoding models,

which use the inverse direction of inference. The idea is to

simplify the problem of obtaining the full mapping of many voxels

to many image pixels in the other direction, now by using models

that predict the activity in a single voxel based on the image in-

tensities at all locations in the visual field (Figure 7C). An encod-

ing model is a filter that is applied to the entire visual image and

tuned to optimally predict the fMRI response in a single voxel

(e.g., Dumoulin and Wandell, 2008; Kay et al., 2008; Nevado

et al., 2004; Thirion et al., 2006). Such a filter is also referred to

as the population-receptive field (pRF) of a voxel (Dumoulin

and Wandell, 2008), where the term ‘‘population’’ indicates that

the tuning pertains to the summed effect of the population of

neurons sampled by the voxel, not to individual neurons. The

receptive fields of voxels in early visual cortex have been charac-

terized as simple two-dimensional Gaussian filters (Dumoulin

and Wandell, 2008; Thirion et al., 2006), difference of Gaussians

(Zuiderbaan et al., 2012), or as standard multi-parameter Gabor

filter banks (Kay et al., 2008). Voxel-wise encoding models have

been extended to effects of color (Brouwer and Heeger, 2009),

facial identity (Gratton et al., 2013), attention (Sprague and Se-

rences, 2013), working memory (Sprague et al., 2014), numeros-

ity (Harvey et al., 2013), semantics (Huth et al., 2012), and even to

other modalities (Schönwiesner and Zatorre, 2009; Thomas

et al., 2015). Encoding models also can incorporate nonlinear

processing stages (Nishimoto et al., 2011).

As outlined above, encoding models predict the responses of

single voxels. However, the task for a reconstruction algorithm is

to solve the opposite inference: which imagemost likely led to an

activation pattern observed acrossmany voxels in visual cortex?

For a reconstruction based on encoding models, a second step

is needed in order to combine the many single-voxel models into

a single inference. Thus, the encoding model needs to be in-

verted. Depending on the complexity of the encoding model,

this can be done using simple matrix inversion (Brouwer and

Heeger, 2009; Sprague andSerences, 2013) or Bayesian estima-

tion (for detailed examples, see Thirion et al., 2006; Naselaris

et al., 2009; and Schoenmakers et al., 2013). Bayesian estima-

tion also makes it possible to extend encoding models and

incorporate prior knowledge of stimulus probabilities, which
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can substantially improve reconstruction (Thirion et al., 2006;

Naselaris et al., 2009; Schoenmakers et al., 2013; Figure 7E).

The importance of priors can be explained using Bayes’ rule.

Let p(rjs) be the conditional probability of observing a brain

response r to stimulus s. This is also referred to as the likelihood.

Ultimately, p(rjs) is the basic output of most neuroimaging

studies, but with restricted sets of stimulation conditions. As

mentioned above, estimating the full p(rjs) is not tractable

because it would require measuring brain responses to all

possible stimuli (but see Yarkoni et al., 2011). Let p(s) be the prior

probability of a stimulus, which reflects how well one could

guess the stimulus without any brain responses just based on

the frequency of their occurrence. Let p(r) be the probability of

a certain brain response, independent of the stimulus condition.

What one wants to infer is p(sjr), the conditional probability of a

visual image s given a brain response r. For limited data, this in-

verse inference is problematic (Poldrack, 2006); however, if the

full p(rjs) is known, then p(sjr) can be obtained according to

Bayes’ rule as follows:

pðsjrÞ=pðrjsÞpðsÞ=pðrÞ: (Equation 1)

This can be transformed to

pðsjrÞfpðrjsÞpðsÞ; (Equation 2)

because for a given brain response r, p(r) is a constant and can

be ignored. This reveals that the probability of a stimulus s given

a brain response r is proportional to the product of the likelihood

p(rjs) and the prior p(s). One conventional approach to deciding

which stimulus s might have caused the brain response r is to

choose the stimulus that has the highest associated likelihood

p(rjs). This is known as the maximum likelihood estimate (ML).

However, as can be seen from Equation 2 above, also the prior

plays an important role in determining the most probable cause.

So a better approach is to choose the stimulus that maximizes

p(sjr), which is referred to as the maximum a posteriori estimate

(MAP). This is illustrated in Figure 7E that provides a reconstruc-

tion of handwritten letters by combining a brain-based ML with a

stimulus prior to yield a MAP (Schoenmakers et al., 2013). The

reconstruction based on brain activity alone (ML) is poor; but, af-

ter combination with the prior, the MAP reconstruction is very

good (Figure 7E).

The encoding and decoding models mentioned above show

that computational approaches can substantially improve de-

coding of cognitive states from brain activity. The encoding

approach does so by directly formulating computational models

for single-voxel responses. A related approach to studying the

link between computational models and brain activity is re-

presentational similarity analysis (RSA; Figure 8; Kriegeskorte

et al., 2008a; Kriegeskorte and Kievit, 2013). RSA is not primarily

aimed at reconstructing cognitive states from brain activity. It

provides a different approach for testing how well specific

computational models fit with the distributed activity pattern in

a given brain area. RSA achieves this by testing whether the

similarity between the brain responses to different stimuli

matches the similarity between these stimuli according to a per-

son’s perceptual judgements, or according to a specific compu-

tational model of representation.
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(A) This example shows four stimuli (adapted from Cichy et al., 2011), two with
cars and twowith chairs, one of each presented either to the left or the right of a
central fixation cross.
(B) (Left) The brain response patterns in primary visual cortex (green) should
largely reflect the retinotopic location of the stimuli. Thus, the correlation of the
responsepatternsamongthe fourdifferent images (symbolically indicatedby the
thickness of the bars between each pair) should be highest for the stimuli that
share the same retinotopic location (left/right of fixation) independent of their
identity (car/chair). (Right) In contrast, in LOC (red), responses should largely
reflect the identity of stimuli. In this case, the correlation should be higher be-
tween responsepatterns for imagesof thesameobjects,whereas the correlation
betweenbrain responses todifferent objects at the same location should be low.
(C) (Top) This can be expressed as a representational dissimilarity matrix
(RDM; for details, see Kriegeskorte et al., 2008a). This matrix contains the
dissimilarity in brain responses (1 – correlation) for each pairwise combination
of stimuli. Here brighter regions indicate higher dissimilarity. The left shows a
measuredRDM in retinotopic visual cortex, the right ameasuredRDM for LOC.
(Bottom) Computational models yield predictions for such RDMs. Here the four
individual images are subjected either to a V1model based on a retinotopically
specific Gabor filter bank (left) or a computational model of location-invariant
object representations in LOC (right; e.g., Riesenhuber and Poggio, 1999). For
eachmodel, this yields a computationalRDM that can then be compared to the
measured RDMs in each area (Kriegeskorte et al., 2008a).
For further details see Kriegeskorte et al. (2008a) and Kriegeskorte and Kievit
(2013).
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As a simple example, Figure 8 shows a basic similarity analysis

for four stimuli, separately for brain responses in retinotopic vi-

sual cortex and in object-recognition region lateral occipital

complex (LOC). The stimuli consist of one of four possible ob-

jects, two cars and two chairs, presented either to the left or right

of fixation (Figure 8A). In early visual cortex, the responses are

dominated by the retinotopic location of the stimuli (Figure 8B,

left). For this reason, the brain responses in V1 are more similar

and exhibit a higher correlation for the stimuli at the same loca-

tion than for stimuli with the same identity but different location.

In LOC (Figure 8B, right), the responses should largely reflect the

identity of the stimuli. So the response patterns to images with

the same objects should be more similar than those for different

objects, and the retinotopic location should play only a minor

role. This set of correlations can be shown more conveniently

in a matrix form (Figure 8C, top row). By convention, typically

the dissimilarity (1 – correlation) is plotted rather than the similar-

ity. This is referred to as a representational dissimilarity matrix

(RDM). These measured RDMs can then be compared to

RDMs predicted by computational models (Kriegeskorte et al.,

2008a). For example, the set of car and chair images could be

subjected to a computational model, such as a Gabor filter

bank model (Figure 8C, bottom left) or a location-invariant model

of object recognition (Figure 8C, bottom right). The similarities

between modeled brain responses for different images yield a

computational RDM that can then be compared to themeasured

RDMs in different brain regions.

RSA provides another interesting constraint on testing the link

betweenmental representations and brain activity patterns. Intu-

itively, one might assume that a brain region that allows one to

best decode a perceptual feature (such as color) is the most

likely area to provide a neural explanation for perception of this

feature. However, Brouwer and Heeger (2009) showed that this

need not be the case. They studied cortical responses to

different color stimuli and found that the accuracy for decoding

the color was highest in V1. However, an analysis of the neural

representational space showed that V1 was incompatible with

the perceptual space, despite yielding high accuracies, because

the similarity between brain responses to different colors in V1

did not match their perceived similarity. In contrast, region V4

provided a closermatch to perception, despite exhibiting smaller

overall accuracies (cf. Figure 6 in Brouwer and Heeger, 2009).

RSA also provides an important future direction for comparing

coding spaces across different brain regions, or even between

different modalities (Cichy et al., 2014) and different species

(Kriegeskorte et al., 2008b).

Conclusions
Taken together, when handled with care, pattern-based analysis

of fMRI patterns can help reveal how cognitive representations

are encoded in human brain signals. This extends more conven-

tional approaches to fMRI that typically have focused on mean

activation levels in smoothed fMRI images (Friston et al.,

1995b). The approach has to be applied carefully in order to

avoid overfitting of the large parameter spaces involved. Caution

also is required when interpreting the results of classification

studies in terms of the information encoded in neural populations

or in the tuning of single neurons. For the future, multivariate
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pattern analysis provides a generic framework for testing com-

putational models with fMRI data, either in the form of encoding

models or in combination with RSAs. Given the limitations of

fMRI, a next important step needs to be the validation of

classification results by direct comparison with recorded popu-

lation measures, and the comparison of coding spaces across

methods and species. Important additional contributions could

come from optical imaging and from future developments in

high-field MRI that might directly reveal the fine-grained repre-

sentational topography of the human brain.
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