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A Robust Deep Model for Improved Classification
of AD/MCI Patients

Feng Li, Loc Tran, Kim-Han Thung, Shuiwang Ji, Dinggang Shen, and Jiang Li

Abstract—Accurate classification of Alzheimer’s disease (AD)
and its prodromal stage, mild cognitive impairment (MCI), plays a
critical role in possibly preventing progression of memory impair-
ment and improving quality of life for AD patients. Among many
research tasks, it is of a particular interest to identify noninvasive
imaging biomarkers for AD diagnosis. In this paper, we present a
robust deep learning system to identify different progression stages
of AD patients based on MRI and PET scans. We utilized the
dropout technique to improve classical deep learning by prevent-
ing its weight coadaptation, which is a typical cause of overfitting in
deep learning. In addition, we incorporated stability selection, an
adaptive learning factor, and a multitask learning strategy into the
deep learning framework. We applied the proposed method to the
ADNI dataset, and conducted experiments for AD and MCI con-
version diagnosis. Experimental results showed that the dropout
technique is very effective in AD diagnosis, improving the classifi-
cation accuracies by 5.9% on average as compared to the classical
deep learning methods.

Index Terms—Alzheimer’s disease (AD), deep learning, early
diagnosis, magnetic resonance imaging (MRI), positron emission
tomography (PET).

I. INTRODUCTION

A LZHEIMER’S disease (AD) is the sixth leading cause
of death in the United States [1]. AD patients usually

undergo progressive stages of cognitive and memory function
impairment, including prodromal, MCI, and AD. For each of
these stages, significant amount of research has been conducted
aiming to understand the underlying pathological mechanisms.
In addition, imaging biomarkers have been identified using dif-
ferent imaging modalities, such as magnetic resonance imaging
(MRI) [2], positron emission tomography (PET) [3], and func-
tional MRI [4]. Imaging biomarkers are a set of indicators com-
puted from image modalities and can be used for early detection
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of AD disease. It has been shown that fusing these different
modalities may lead to more effective imaging biomarkers [5].

The first successful deep learning framework autoencoder
was developed in 2006 [6]. It was subsequently used in other
application fields, and achieved state-of-the-art performance in
speech recognition, image classification, and computer vision
[7]. Deep learning itself also evolves after 2006. For instance,
the multimodal deep learning framework boosted speech classi-
fication by learning a shared representation between video and
audio modalities [8]. A dropout technique further improved zip
code recognition, document classification, and image recogni-
tion [9], [10].

In this paper, we developed a robust deep learning frame-
work for AD diagnosis by fusing complementary information
from MRI and PET scans. These 3-D scans were preprocessed
and their features were further extracted. Specifically, we first
applied principal component analysis (PCA) to obtain PCs as
new features. We then utilized the stability selection technique
[11] together with the least absolute shrinkage and a selection
operator (Lasso) method [12] to select the most effective fea-
tures. The selected features were subsequently processed by
the deep learning structure. Model weights in the deep struc-
ture were first initialized by unsupervised training, and then,
fine-tuned by AD patient labels. During the fine-tuning phase,
the dropout technique was employed to improve the model’s
generalization capability. Finally, the learned feature represen-
tation was used for AD/MCI classification by a support vector
machine (SVM).

In addition to discrete patient labels (AD, MCI, or healthy),
there are two additional clinical scores, namely minimum mental
state examination (MMSE) and AD assessment scale-cognitive
subscale (ADAS-Cog) associated with each patient. MMSE is a
30-point questionnaire widely used to measure cognitive impair-
ment [13]. It is used to estimate the severity and progression of
cognitive impairment, instead of providing any AD information.
ADAS-Cog is the most popular cognitive testing instrument to
measure the severity of the most important symptoms of AD,
including the disturbances of memory, language, praxis, atten-
tion, and other cognitive abilities, which have been referred as
the core symptoms of AD [14]. The information from these
scores is related and identifying the commonality among them
may help AD diagnosis. We configured the deep learning struc-
ture as a multitask learning (MTL) framework, and treated the
learning of class label, MMSE, and ADAS-Cog as related tasks
to improve the prediction of main task (class label).

We evaluated the proposed method on the ADNI1 dataset,
and compared it with a baseline method and a similar deep

1Available at http://www.loni.ucla.edu/ADNI.
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Fig. 1. Diagram of the proposed multitask deep learning framework.

learning system, where the autoencoder was used as a feature
extractor for AD diagnosis [5]. The baseline method contains
feature selection and SVM steps, but does not use deep learning.
We also evaluated the impact on performance of each of the
components in the proposed system. A brief version of this
paper was published in [15].

II. MATERIALS AND METHODS

The proposed system consists of multiple components, in-
cluding PCA, stability selection, unsupervised feature learning,
multitask deep learning, and SVM training, as shown in Fig. 1.
We detail each of these components in the following sections.

A. Data Preprocessing

We utilized the public ADNI dataset to validate our proposed
deep learning framework. The dataset consists of MRI, PET, and
CSF data from 51 AD patients, 99 MCI patients [43 MCI patients
who converted to AD (MCI.C), and 56 MCI patients who did not
progress to AD in 18 months (MCI.NC)], as well as 52 healthy
normal controls. In addition to the crisp diagnostic result (AD or
MCI), this dataset contains two additional clinical scores MMSE
and ADAS-Cog for each patient. A typical procedure of image
processing was applied to the 3-D MRI and PET images [2],
[16], [17] including anterior commissure-posterior commissure
correction, skull stripping, cerebellum removal, and spatially
normalization. Finally, we extracted 93 region-of-interest-based
volumetric features from MRI and PET images, respectively,
which together with three CSF biomarkers, i.e., Aβ42 , t−tau,
and p-tau, sum up to 189 features for each subject.

B. Principal Component Analysis

PCA is a linear orthogonal transformation that converts a set
of features into linearly uncorrelated variables in which each of
the new variable is a linear combination of all original features
[18]. The first principal component (PC) is defined as the one
that can explain the largest variance in the original dataset. The
second PC has the second largest variance under the constraint
that it is orthogonal to the first component. If correlations exist
among features, the number of PCs that can be found is usually
less than the number of features in the original data. PCA is opti-

Fig. 2. PCA example. PC 1 contains the most energy of the data but does not
have any discrimination information for the “red” and “blue” classes.

mal for preserving energy, and it is often used for dimensionality
reduction by just keeping the first few PCs.

Let F denotes a feature dataset with a size of n × p, where n
is the number of data samples and p is the number of features in
the data, and each column in F is centered. PCA can be achieved
by performing the singular value decomposition on F as

F = UΣVT (1)

where U is an n × n matrix with orthogonal unit columns (left
singular vectors of F), Σ is an n × p diagonal matrix consisting
of singular values of F from the largest to the least, and V is an
p × p matrix whose columns are orthogonal unit vectors (right
singular vectors of F).

To achieve dimensionality reduction, the first l columns in V
corresponding to the first l largest singular values of F can be
used as a transformation matrix to be applied on F

x = FVl (2)

where Vl consists of the first l columns of V.
Geometrically, PCA analysis rotates data to align its maxi-

mum variance direction of the data with the coordinate system as
illustrated in Fig. 2. PCA is an effective tool for dimensionality
reduction but the preserved PCs may not be useful for classifi-
cation. The 2-D artificial dataset in Fig. 2 consists of “blue” and
“red” classes. After PCA, the whole dataset was rotated, and
its main axis was aligned with the coordinate system. However,
even though PC 1 has the largest variance, it does not contain
any discriminating information for the two classes. For the pur-
pose of classification, PC 2 is preferred, and a feature selection
step is necessary. This example shows that the feature selection
may be applied after PCA to retain discriminating information
for classification.

C. Stability Selection

In this paper, we first applied PCA to the 189 features, and
used the resulting PCs as new features. We then applied Lasso
[12] to identify the most effective features for AD diagnosis.
Lasso tries to minimize the following cost function for feature
selection

min
s

||t − xs||22 + λ||s||1 (3)
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where t ∈ {+1,−1}n is a class label vector of size n × 1 as-
sociated with the feature matrix x of size n × l, where l is the
number of features (PCs) found in PCA, s = [s1 , s2 , . . . , sl ]T is
the weight vector associated with the l features (columns in x),
λ is a regularization parameter, and || · ||2 and || · ||1 denote L2
and L1 norms, respectively. Because of the L1 norm constraint
on the weight magnitude, the solution minimizing the above
cost function is usually sparse, meaning that if a feature is not
correlated with the target class label, the feature will have a zero
value for its weight. Features having nonzero weights will be
selected and otherwise will be excluded.

It is well known that the solution of L1 norm-based opti-
mizations are sensitive to the choice of λ, and it is difficult to
determine how many features should be kept in the model. A
recent breakthrough sheds a light on selecting the right amount
of regularization for stability selection [11]. The idea is to re-
peat the feature selection procedure multiple times based on
bootstrapped datasets, and compute the probability of the fea-
tures to be selected. The final selected features are those having
probabilities above a predefined threshold th . It has been shown
experimentally and theoretically that the feature selection results
vary little for sensible choices in a range of the cutoff value for
th [11]. We incorporated the stability selection concept into the
AD patient diagnosis in this paper. In particular, we repeated the
Lasso procedure 50 times, and each time with a different value
for the parameter λ (we used the SLEP toolbox for Lasso2). A
probability pi , for the ith feature was computed by counting the
frequency of the feature being selected in the 50 experiments.
The ith feature was selected if pi is larger than a predefined
threshold th .

D. Multitask Deep Learning With Dropout

In contrast to a traditionary three-layer neural network (shal-
low structure), deep learning is based on a deep architecture
consisting of many layers of hidden neurons for modeling. A
shallow architecture would involve many duplications of effort
to express things, and such a fat architecture has been shown to
suffer from the problem of overfitting, which leads to a poor gen-
eralization capability. Instead, a deep architecture could more
gracefully reuse previous computations, and discover compli-
cated relations of input [19].

To train a deep architecture, the standard Backpropagation
(BP) algorithm did not work well with randomly initialized
weights because the error feedback becomes progressively nois-
ier as it goes back to lower levels (closer to inputs) making the
low-level weight updates less effective. Even though experi-
ments have shown that if top layers have enough units, the deep
structure can still bring down training errors small enough, it
cannot generalize well to new data [20]. This is because the top
layers can be effectively trained by gradient based algorithms
but low levels cannot. The randomly initialized low-level layers
behave like random feature detectors so good representations
for original data were not achieved leading to degraded general-
ization capability [20]. In 2006, a breakthrough in deep learning

2Available at http://www.public.asu.edu/ jye02/Software/SLEP/index.htm.

Fig. 3. Multitask deep learning with dropout. “x” denotes a dropped unit.

Fig. 4. Basic RBM model.

has made the deep architecture training possible by utilizing
the restricted Boltzmann machine (RBM) to initialize multiple
hidden layers one layer at a time in an unsupervised manner
[6]. With the unsupervised learning, deep learning tries to un-
derstand data first, i.e., to obtain a task specific representation
from data so that a better classification can be achieved. It has
experimentally proven that the unsupervised learning step plays
a critical role in the success of deep learning [7]. The proposed
deep model shown in Fig. 3 consists of several components that
will be described below.

1) Pretraining With RBM: Each layer in the proposed deep
model is an RBM, and the deep model used in this paper con-
sists of a stack of RBMs. RBM is an energy-based model, in
which a scalar energy is associated with each configuration of
the variables in the model, and a probability distribution func-
tion (PDF) through the energy function is defined. The purpose
of learning is to modify the energy function so that a desir-
able PDF can be achieved, i.e., to have low energy. A basic
RBM model having a visible (input) layer and a hidden (output)
layer is shown in Fig. 4. The visible layer of the bottom RBM
contains real-valued units (receiving data) and all other RBM
layers have binary units. Let v ∈ RM represents input data (vis-
ible units), and h ∈ 0, 1N denotes binary hidden units for the
bottom RBM, we used Gaussian–Bernoulli RBMs to train it
[20], [21]. All other RBMs were trained by utilizing Bernoulli–
Bernoulli distribution. Variables v and h have a joint probability
distribution defined as

p(v, h) =
1
Z

exp−E (v ,h) (4)

where E(v, h) is an energy function and Z is a normaliza-
tion constant. For real-valued visible layer RBMs, E(v, h) is
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defined as

E(v, h) =
1

2σ2

∑

i

v2
i

− 1
σ2

⎛

⎝
∑

i

civi +
∑

j

bjhj +
∑

i,j

viwijhj

⎞

⎠ (5)

where ci and bj are biases of the ith and jth units in the visible
and hidden layers, respectively. wij is the weight connecting vi

and hj , and σ2 is the variance of v. The conditional probability
distributions are

P (hj = 1|v) = sigmoid

(
1
σ2

(
∑

i

wij vi + bj

))
(6)

P (vi |h) = N

⎛

⎝
∑

j

wijhj + ci, σ
2

⎞

⎠ . (7)

If both visible and hidden layers are binary, the energy function
and conditional probability distributions are defined as

E(v, h) = −

⎛

⎝
∑

i

civi +
∑

j

bjhj +
∑

ij

viwijhj

⎞

⎠ (8)

P (hj = 1|v) = sigmoid

(
∑

i

wij vi + bj

)
(9)

P (vi = 1|h) = sigmoid

⎛

⎝
∑

j

wijhj + ci

⎞

⎠ . (10)

Model parameters w, b, and c are updated using contrastive
divergence [22]. For RBM having a real-valued visible layer, the
formulas for updating those parameters during each iteration are

Δwt+1
ij = ηΔwt

ij

− ε

(
<

1
σ2 vihj >d − <

1
σ2 vihj >m

)
(11)

Δbt+1
i = ηΔbt

i − ε

(
<

1
σ2 vi >d − <

1
σ2 vi >m

)
(12)

Δct+1
j = ηΔct

j − ε (< hj >d − < hj >m ) (13)

where < · >d and < · >m denote the expectation computed
over data and model distributions accordingly, t is the iteration
index, η is the momentum, and ε is the learning rate. For binary
RBM, (11) and (12) become

ΔWt+1
ij = ηΔWt

ij − ε (< vihj >d − < vihj >m ) (14)

Δbt+1
i = ηΔbt

i − ε (< vi >d − < vi >m ) . (15)

Note that the pretraining of an RBM is unsupervised, i.e., class
label (classification task) or desired output (regression) is not
needed in the training. After the pretraining, we attached the
class label on top of the stacked RBMs, and utilized an adaptive
BP algorithm to fine tune the weights in the model. All binary
layers were also converted to real-valued units by using their

continuous activities. Thus, the deep learning model turned to
be a traditional multilayer perceptron but its weights were ini-
tialized by RBM.

2) Multitask Learning: In MTL, related tasks are learned si-
multaneously by extracting and utilizing appropriate shared in-
formation across tasks to improve performance. It has received
attention in broad areas recently, such as machine learning, data
mining, computer vision, and bioinformatics [23]–[25]. This ap-
proach is particularly effective when only limited training data
for each task is available. It is worth noting that neural networks
can simultaneously model multiple outputs making deep learn-
ing a natural MTL framework if multiple tasks share inputs [29].
The proposed multitask deep learning framework is shown in
Fig. 3, where we treated the predictions of class label, MMSE,
and ADAS-Cog as three different tasks and modeled them si-
multaneously. MMSE and ADAS-Cog were normalized to the
range of [0, 1], and we used the deep structure as a regression
model. The class label was coded by the 1-of-k scheme. To
classify an input vector, we checked the corresponding k out-
puts, and assign it to the class having the largest output. One
drawback of deep model is overfitting due to large capacity.
This is more prominent if training data is limited. To overcome
this limitation, we utilized the dropout technique to improve
training.

3) Dropout With Adaptive Adaptation: Deep learning
achieved excellent results in applications, where training data
size is large. For small sized datasets such as the one in this
paper, it is still possible for a deep structure to overfit the data
given the fact that it usually has tens of thousands or even mil-
lions of parameters. To improve the generalization capability of
the model, the dropout technique tries to prevent weight coadap-
tation by randomly dropping out some units in the model during
training [9], [10]. We incorporated the dropout technique in the
MTL context to improve AD diagnosis as shown in Fig. 3. In
the training process, each hidden unit in the model was dropped
with a probability of 0.5 when a batch of training cases were
present. Previous experiments [9] showed that it is also benefi-
cial if we apply the “dropout” process to the input layer but with
a lower probability (i.e., 0.2 in this paper). In the testing proce-
dure, all hidden units and inputs were used to compute model
outputs for a testing case with appropriate compensations, i.e.,
weights between inputs and the first hidden layer were scaled
by 0.8 and all other weights were halved.

During the multitask fine-tuning step, the stochastic gradient
descent method with a fixed learning factor is usually utilized
as [6]

wij = wij + Δwij = wij − α
∂L

∂wij
(16)

where ∂L
∂wi j

is the gradient of the cost function L and α is a
learning factor. Sometimes, the weights update may contain a
momentum term [9]. We proposed an adaptive learning factor to
speed up the adaptation. The motivation of the adaptive learning
is that the learning factor should be large at locations, where
gradient is small and vice versa. Assume the decrease of L due
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to the change in wij is approximated by

ΔLij = Lij
new − Lij

old ≈ ∂L

∂wij
× Δwij = −α

[
∂L

∂wij

]2

(17)
then ΔL due to all wij can be computed as

ΔL = −α
∑

i

∑

j

[
∂L

∂wij

]2

. (18)

Suppose, we want to decrease L by β%, then Lnew = (1 −
β)Lold , and an adaptive learning factor α can be determined as

α =
βLold

∑
i

∑
j

[
∂L

∂wi j

]2 . (19)

We set β as 10% in our experiments in this paper. Once the new
feature representation is learned, an SVM classifier [26] was
trained using the learned feature representation.

E. SVM Classifier

Given a set of data pairs {ri , ti}n
i=1 , where ri ∈ RM is the

learned feature representation from subjects, ti ∈ {+1,−1} is
a class label (e.g., AD versus non-AD) associated with ri . An
SVM defines a hyperplane

f(r) = kT φ(r) + e = 0 (20)

separating the data points into two classes. In (20), k and e are
the hyperplane parameters, and φ(r) is a function mapping, the
vector r to a higher dimensional space. The hyperplane (20)
is determined using the concept of structural risk minimization
[26] by solving the following optimization problem:

min
k,e,ξ

(
1
2
kT k + C

n∑

i=1

ξi

)
(21)

subject to

ti
(
kT φ(ri) + e

)
≥ 1 − ξi, ξi ≥ 0 (22)

where C is a regularization parameter and ξi is a slack variable.
After the hyperplane is determined, an AD case is declared if
f(ri) > 0, or otherwise a non-AD case is declared.

III. RESULTS AND DISCUSSIONS

A. Experimental Setup

1) Tenfold Cross Validation (CV): We consider four clas-
sification tasks including AD patients versus healthy control
subjects (AD versus HC), MCI patients versus HC (MCI ver-
sus HC), AD patients versus MCI patients (AD versus MCI),
and MCI-converted versus MCI-non converted (MCI.C versus
MCI.NC). For each task, we utilized a tenfold CV scheme to
evaluate the proposed method. In the tenfold CV, we randomly
divided the dataset into ten parts and for one run, we sepa-
rated one part for testing and applied the proposed framework
to the remaining data to train a classification model. This pro-
cedure was repeated ten times so that each part was tested once.

Finally, testing accuracies were computed. To obtain a more re-
liable estimate of the performance, we repeated the tenfold CV
ten times for each task with different random data partitions and
computed average accuracy. To compare different classification
models, we kept the same data partitions in the tenfold CV,
and utilized the paired t-test to evaluate if there is a significant
performance difference.

2) Hyperparameter Determination: We did preliminary ex-
periments to determine the structure of the deep learning model.
It was found that using three hidden layers with hidden units
of 100-50-20 worked the best among the candidate structures
considered, and was, thus, utilized in our experiments. For the
SVM classifier, we tried different kernels, and a linear kernel
was chosen. We also did a grid search for the “soft margin” pa-
rameter in the linear kernel SVM model but it did not improve
the classification accuracies. Therefore, in all experiments, we
utilized a three hidden-layer model with a structure of 100-50-20
for feature learning, and a linear SVM with default soft margin
as the classifier.

3) Impact Assessment for Individual Component: There are
four components in the proposed framework including PCA,
stability selection, dropout, and MTL. Inspired by “sensitivity
analysis” and “impact assessment” that analyze inputs of or
components in a model and identify their impacts on the model
objectives by varying the inputs [27]. We incorporated a similar
concept to evaluate the impact of each component on model per-
formance by varying the component (presence versus absence).
“Absence” means that the component was not included in the
model.

4) Methods for Comparison: We compared the proposed
method with a baseline method, and a similar deep learning
system proposed in [5]. The baseline method consists of all
components in the proposed system except the deep learning
step. The work by Suk and Shen in [5] is an autoencoder-based
deep learning method in which feature representations for MRI,
PET, and CSF from the same dataset were learned separately and
combined by a linear SVM classifier. They also combined the
learned representations with original features for AD diagnosis.

B. Results

Table I shows the overall performances of the proposed
method, and the impact of each component in the framework.
The proposed method performed the best in diagnosing AD and
MCI patients, and discriminating MCI patients from AD patients
with accuracies of 91.4%, 77.4%, and 70.1%, respectively. It is
significantly better than the baseline method that obtained accu-
racies of 86.4%, 72.1%, and 61.5% for the diagnoses. In the MCI
conversion diagnosis (MCI.C versus MCI.NC), the PCA com-
ponent slightly degraded the proposed method (from 58.1% to
57.4%) but it is still significantly better than the baseline method
(57.4% versus 50.6%).

Among those components, it is obvious that “dropout” has
the most significant impact on the performances. Without
“dropout,” deep learning did not significantly improve the base-
line method (68.2% versus 67.7% in terms of average acc.).
The least important component is “PCA,” i.e., the average acc.
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TABLE I
PERFORMANCE COMPARISON (IN%) OF THE COMPETING METHODS

Tasks Proposed -PCA -Dropout -SS -Multitask Baseline

AD versus HC 91.4(1.8) 89.6(1.3) 84.2(3.0) 89.4(1.6) 90.3(1.7) 86.4(2.0)
MCI versus HC 77.4(1.7) 76.4(1.5) 73.1(3.1) 74.3(1.6) 75.6(1.7) 72.1(3.0)
AD versus MCI 70.1(2.3) 69.5(2.7) 65.1(3.7) 68.7(2.1) 67.1(2.9) 61.5(2.9)
MCI.C versus MCI.NC 57.4(3.6) 58.1(1.8) 50.2(3.3) 57.7(1.8) 56.7(3.0) 50.6(4.7)
Average 74.1 73.4 68.2 72.5 72.4 67.7

The proposed method consists of four components. “-PCA” stands for “the proposed method without the PCA
component” and “SS” stands for stability selection, “baseline” denotes the framework without the deep learning
component.

TABLE II
PAIRED t-TEST BETWEEN RESULTS OF THE PROPOSED METHOD VERSUS DEEP LEARNING WITHOUT DROPOUT

Tasks Proposed -Dropout Improvement p-value SAEF LLF+SAEF

AD versus HC 91.4(1.8) 84.2(3.0) 7.2 < 10−3 83.2(2.7) 85.3(3.2)
MCI versus HC 77.4(1.7) 73.1(3.1) 4.3 0.0034 70.1(2.8) 76.9(2.3)
AD versus MCI 70.1(2.3) 65.1(3.7) 5.0 0.0017 N/A N/A
MCI.C versus MCI.NC 57.4(3.6) 50.2(3.3) 7.2 < 10−3 58.4(4.1) 60.3(2.3)
Overal Average 74.1 68.2 5.9 N/A N/A N/A
Average w/o AD versus MCI 75.4 69.2 6.2 N/A 70.6 74.2

The methods of “SAEF” and “LLF+SAEF” were proposed by Suk and Shen [5]. “SAEF” stands for stacked autoencoder
features and “LLF” denotes low-level features.

slightly dropped from 74.1% to 73.4% without the PCA com-
ponent. Without “stability selection” and “multitask learning,”
the average accuracy dropped from 74.1% to 72.5% and 72.4%,
respectively.

We conducted a paired t-test between results by the proposed
method and those from classical deep learning (“-Dropout”).
Table II lists the improvements and p-values. The average im-
provement is 5.9%, and the improvements for all the four clas-
sification tasks are significant.

The work by Suk and Shen [5] on the same dataset is also
shown in Table II, where “SAEF” corresponds to the method us-
ing features learned by a deep autoencoder, and “LLF+SAEF”
represents the method that combines original features with the
SAEF features for AD diagnosis. The AD versus MCI classifica-
tion experiment was not conducted in [5]. The proposed method
(75.4%) outperformed the SAEF method (with an average accu-
racy of 70.6%). By combining SAEF with LLF (LLF+SAEF),
the average accuracy was increased to 74.2% (see last column
in Table II).

C. Discussions

There are usually two ways to increase the generalization
capability of a model, adding regularization (L1 or L2 norm)
on weights or using a committee machine. However, solving
the regularization problem is usually challenging especially in
the deep learning context. In addition, the committee machine
technique requires averaging many separately trained models
to compute a prediction for a testing case, which is time con-
suming for deep learning. The dropout procedure does the both
(constraint and committee machine) simultaneously in a very
efficient way. 1) Each submodel in training is a sampled model

from all possible ones and all submodels share weights. The
weight sharing property is equivalent to the L1 or L2 norm
constraint on weights, and 2) the testing procedure is an approx-
imation of averaging all trained submodels for a testing case but
it does not separately store them because they share weights.
This is an extremely efficient and smart implementation of a
committee machine [9], [10].

The impact evaluation method was inspired by the “sensi-
tivity analysis” and “impact assessment” [27]. We were aiming
to identify the impact on performance of each component in
the model by excluding the component from the pipeline. Note
that we did not try to decouple the component from the system.
This evaluation method may not be a strict sensitivity analysis
or impact assessment by means of their definitions, but we can
verify each component if it can improve the AD diagnosis when
it is included in the proposed system. Our experiments showed
that the dropout component has the largest impact on the per-
formance, MTL ranked the second, stability selection the third,
and PCA has the least impact on the performance.

In terms of stability selection and computational efficiency,
there were usually around 40 features left after the stability se-
lection, and it took about 1 h for a personal computer to conduct
a tenfold CV evaluation for one task. The number of features
that were chosen was determined by stability selection, in which
the Lasso algorithm ran 50 times with different values of reg-
ularization parameter (λ). In each run, Lasso chose different
features, and a probability of being chosen for each feature was
computed in the 50 runs. Finally, a feature was chosen if its
probability is larger than 0.5.

It is worth to note that the results by the proposed method
in Tables I and II only used the new representations learned by
the deep model. We tried to combine the new representations
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with the original features but the combination did not improve
the performance. In [5], new representations learned from au-
toencoder did not perform well unless they were combined with
the original features. Our experiment also showed that the deep
model without dropout just performed comparably as the base-
line method. It seems that the traditional deep learning cannot
extract information effectively from small datasets unless it is
regularized by techniques such as dropout.

In [28], a multikernel SVM (MK-SVM) method was applied
to the same dataset to combine the original LLF features for
AD diagnosis, and achieved 93.2% and 76.4% for AD ver-
sus HC and MCI versus HC classifications, respectively. The
MCI conversion diagnosis and AD versus MCI classification
were not conducted. In [5], utilizing the MK-SVM method to
combine SAEF features from MRI, PET, and CSF boosted the
performances to 95.9%, 85.0%, and 75.8% for the three tasks
(AD versus MCI classification was not performed), respectively.
Since the dropout technique improved upon the basic deep learn-
ing, we are currently investigating if the MK-SVM method can
further boost the performance of the proposed system.

We did not attempt to perform a comprehensive comparison
study of the proposed method with others that have been ap-
plied to this dataset in the literature. Instead, we have evaluated
some recently proposed advanced machine learning techniques
for AD diagnosis including Lasso, stability selection, MTL,
deep learning, and dropout. The dropout technique seems to be
an effective method of regularization for learning with small
datasets. Without dropout, deep learning has no advantage over
the baseline method on ANDI dataset (68.2% versus 67.7%).
Note that dropout is computationally very efficient as compared
to either L1 norm-based regularization or committee machine,
and it can be extended to many models other than the deep
model as discussed in this paper.

IV. CONCLUSION

Our proposed method achieved 91.4%, 77.4%, 70.1%, and
57.4% accuracies for AD versus HC, MCI versus HC, AD
versus MCI, and MCI.C versus MCI.NC classifications, re-
spectively. The framework consists of multiple components in-
cluding PCA, stability selection, dropout, and multitask deep
learning. We showed that dropout is the most effective one.
This is not surprising because the size of ADNI data is rel-
atively small compared to that of the deep structure utilized
in this paper. Classical deep learning does not perform well on
this small dataset, but with the dropout technique, the average
accuracy was improved by 5.9% on average. We plan to incor-
porate MK-SVM [5] into our method for further improving AD
diagnosis.
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